Introducing August: a novel strategy for an omnidirectional spherical rolling robot

This paper describes a prototype and analytical studies of a spherical rolling robot, a new design of an omnidirectional robot system. The robot can arbitrarily begin to move in any direction to the target, and autonomously roll and reach any desired position. Our design considers a spherical robot with an internal mechanism for propulsion. The propulsion mechanism distributes weights radially along spokes fixed inside the sphere and enables the robot to accelerate, decelerate, and move with constant velocity. A mathematical model of the robot's dynamic and motion is instructed. An algorithmic motion planning is developed and, partly, pseudo-code of that is presented. For a number of missions, it is shown experimentally that the model agrees well with the results.

[1]  Benoît Raucent,et al.  ROLLMOBS, a new universal wheel concept , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[2]  Benoît Raucent,et al.  Design of omnimobile robot wheels , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[3]  A. Agrachev,et al.  An intrinsic approach to the control of rolling bodies , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[4]  Masayoshi Wada,et al.  Modeling and control of a new type of omnidirectional holonomic vehicle , 1996, Proceedings of 4th IEEE International Workshop on Advanced Motion Control - AMC '96 - MIE.

[5]  Yutaka Kanayama,et al.  Smooth local path planning for autonomous vehicles , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[6]  Yan Wang,et al.  Motion control of a spherical mobile robot , 1996, Proceedings of 4th IEEE International Workshop on Advanced Motion Control - AMC '96 - MIE.

[7]  Sunil K. Agrawal,et al.  Spherical rolling robot: a design and motion planning studies , 2000, IEEE Trans. Robotics Autom..

[8]  Charles P. Neuman,et al.  Kinematic modeling of wheeled mobile robots , 1987, J. Field Robotics.

[9]  Philip F. Spelt,et al.  Autonomous Mobile Robot Research Using The Hermies-III Robot , 1989, Proceedings. IEEE/RSJ International Workshop on Intelligent Robots and Systems '. (IROS '89) 'The Autonomous Mobile Robots and Its Applications.

[10]  Giuseppe Oriolo,et al.  Dynamic mobility of redundant robots using end-effector commands , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[11]  Mark A. Minor,et al.  Simple motion planning strategies for spherobot: a spherical mobile robot , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[12]  Rodney A. Brooks,et al.  Elephants don't play chess , 1990, Robotics Auton. Syst..

[13]  Joel W. Burdick,et al.  Nonholonomic mechanics and locomotion: the snakeboard example , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[14]  Woojin Chung,et al.  Design of a nonholonomic manipulator , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[15]  François G. Pin,et al.  Navigation of car-like mobile robots in obstructed environments using convex polygonal cells , 1992, Robotics Auton. Syst..

[16]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[17]  Ranjan Mukherjee,et al.  Optimal Trajectory Planning for Mobile Robots using Jacobian Elliptic Functions , 1997, Int. J. Robotics Res..

[18]  Antonio Bicchi,et al.  Dexterous manipulation through rolling , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[19]  Keigo Watanabe,et al.  Control of an omnidirectional mobile robot , 1998, 1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111).

[20]  Antonio Bicchi,et al.  Introducing the "SPHERICLE": an experimental testbed for research and teaching in nonholonomy , 1997, Proceedings of International Conference on Robotics and Automation.

[21]  Yoram Koren,et al.  Potential field methods and their inherent limitations for mobile robot navigation , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[22]  Ronald C. Arkin,et al.  Integrating behavioral, perceptual, and world knowledge in reactive navigation , 1990, Robotics Auton. Syst..

[23]  Jean-Paul Laumond,et al.  Feasible Trajectories for Mobile Robots with Kinematic and Environment Constraints , 1986, IAS.

[24]  Gerardo Lafferriere,et al.  A Differential Geometric Approach to Motion Planning , 1993 .

[25]  Y. Kanayama,et al.  Smooth Local Path Planning for Autonomous Vehicles , 1990, Autonomous Robot Vehicles.

[26]  Jun Tang,et al.  Design and traveling experiment of an omnidirectional holonomic mobile robot , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[27]  Velimir Jurdjevic The geometry of the plate-ball problem , 1993 .

[28]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[29]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[30]  F. G. Pin,et al.  Autonomous Trajectory Generation for Mobile Robots with Non-Holonomic and Steering Angle Constraints , 1990, Proceedings of the IEEE International Workshop on Intelligent Motion Control.