Advanced modeling of the effective minority carrier lifetime of passivated crystalline silicon wafers

A strong injection level dependence of the effective minority carrier lifetime (τeff) is typically measured at low injection levels for undiffused crystalline silicon (c-Si) wafers symmetrically passivated by a highly charged dielectric film. However, this phenomenon is not yet well understood. In this work, we concentrate on two of those possible physical mechanisms to reproduce measured τeff data of c-Si wafers symmetrically passivated by atomic layer deposited Al2O3. The first assumes the existence of a defective region close to the c-Si surface. The second assumes asymmetric electron and hole lifetimes in the bulk. Both explanations result in an adequate reproduction of the injection dependent τeff found for both n- and p-type c-Si wafers. However, modeling also predicts a distinctly different injection dependence of τeff for the two suggested mechanisms if the polarity of the effective surface charge is inverted. We test this prediction by experimentally inverting the polarity of the effective surfac...

[1]  Wmm Erwin Kessels,et al.  Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3 , 2006 .

[2]  P. Altermatt,et al.  Assessment and parameterisation of Coulomb-enhanced Auger recombination coefficients in lowly injected crystalline silicon , 1997 .

[3]  A. Aberle,et al.  Carrier recombination at silicon–silicon nitride interfaces fabricated by plasma-enhanced chemical vapor deposition , 1999 .

[4]  Wilhelm Warta,et al.  Impact of illumination level and oxide parameters on Shockley–Read–Hall recombination at the Si‐SiO2 interface , 1992 .

[5]  D.B.M. Klaassen,et al.  A unified mobility model for device simulation—I. Model equations and concentration dependence , 1992 .

[6]  Rudolf Hezel,et al.  High‐quality surface passivation of silicon solar cells in an industrial‐type inline plasma silicon nitride deposition system , 2004 .

[7]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[8]  Armin G. Aberle,et al.  Progress in Low‐temperature Surface Passivation of Silicon Solar Cells using Remote‐plasma Silicon Nitride , 1997 .

[9]  Thomas Lauinger,et al.  Injection-level dependent surface recombination velocities at the silicon-plasma silicon nitride interface , 1995 .

[10]  S. Steingrube,et al.  Interpretation of recombination at c-Si/SiNx interfaces by surface damage , 2010 .

[11]  W. Warta,et al.  Field effect passivation of high efficiency silicon solar cells , 1993 .

[12]  P. Altermatt,et al.  Reassessment of the intrinsic carrier density in crystalline silicon in view of band-gap narrowing , 2003 .

[13]  Florian Werner,et al.  Interface recombination parameters of atomic-layer-deposited Al2O3 on crystalline silicon , 2012 .

[14]  A. Mette,et al.  Thermal oxidation for crystalline silicon solar cells exceeding 19% efficiency applying industrially feasible process technology , 2008 .

[15]  D. Macdonald,et al.  Measuring and interpreting the lifetime of silicon wafers , 2004 .

[16]  S. Glunz,et al.  Advanced lifetime spectroscopy: unambiguous determination of the electronic properties of the metastable defect in boron-doped CZ-Si , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[17]  R. Sinton,et al.  Contactless determination of current–voltage characteristics and minority‐carrier lifetimes in semiconductors from quasi‐steady‐state photoconductance data , 1996 .

[18]  A. W. Stephens,et al.  High‐eficiency silicon solar cells: Si/SiO2, interface parameters and their impact on device performance , 1994 .

[19]  P. Altermatt,et al.  The effect of sample edge recombination on the averaged injection-dependent carrier lifetime in silicon , 2012 .

[20]  R. Hall Electron-Hole Recombination in Germanium , 1952 .

[21]  M. Kunst,et al.  Recombination at the silicon nitride/silicon interface , 1997 .

[22]  D. Macdonald,et al.  Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon , 2004 .

[23]  R. Mertens,et al.  Determination of Si-SiO/sub 2/ interface recombination parameters using a gate-controlled point-junction diode under illumination , 1988 .

[24]  A. S. Grove,et al.  Surface effects on p-n junctions: Characteristics of surface space-charge regions under non-equilibrium conditions , 1966 .

[25]  Andreas Schenk,et al.  Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulation , 1998 .

[26]  P. Lenahan,et al.  Noninvasive nature of corona charging on thermal Si∕SiO2 structures , 2004 .

[27]  Armin G. Aberle,et al.  Surface passivation of crystalline silicon solar cells: a review , 2000 .

[28]  Mark Kerr,et al.  Recombination at the interface between silicon and stoichiometric plasma silicon nitride , 2002 .

[29]  Wmm Erwin Kessels,et al.  On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3 , 2008 .

[30]  R. Hezel,et al.  Fixed charge density in silicon nitride films on crystalline silicon surfaces under illumination , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[31]  P. V. Gray,et al.  DENSITY OF SiO2–Si INTERFACE STATES , 1966 .

[32]  R. Brendel,et al.  Electronic and chemical properties of the c-Si/Al2O3 interface , 2011 .

[33]  H. Schlangenotto,et al.  Temperature dependence of the radiative recombination coefficient in silicon , 1974 .

[34]  W. Warta,et al.  Field-effect passivation of the SiO2Si interface , 1999 .