Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions

[1]  M. Shupe,et al.  The Sensitivity of Springtime Arctic Mixed-Phase Stratocumulus Clouds to Surface-Layer and Cloud-Top Inversion-Layer Moisture Sources , 2014 .

[2]  T. Mauritsen,et al.  Comments on “Current GCMs' Unrealistic Negative Feedback in the Arctic” , 2013 .

[3]  B. Stevens,et al.  Atmospheric component of the MPI‐M Earth System Model: ECHAM6 , 2013 .

[4]  A. Holtslag,et al.  The role of snow‐surface coupling, radiation, and turbulent mixing in modeling a stable boundary layer over Arctic sea ice , 2013 .

[5]  S. Bony,et al.  LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection , 2013, Climate Dynamics.

[6]  G. Cesana,et al.  Ubiquitous low‐level liquid‐containing Arctic clouds: New observations and climate model constraints from CALIPSO‐GOCCP , 2012 .

[7]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[8]  S. Vavrus,et al.  Evidence linking Arctic amplification to extreme weather in mid‐latitudes , 2012 .

[9]  D. Klocke,et al.  Tuning the climate of a global model , 2012 .

[10]  H. Tsujino,et al.  A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3 —Model Description and Basic Performance— , 2012 .

[11]  Ann M. Fridlind,et al.  A FIRE-ACE/SHEBA Case Study of Mixed-Phase Arctic Boundary Layer Clouds: Entrainment Rate Limitations on Rapid Primary Ice Nucleation Processes , 2012 .

[12]  Wei Huang,et al.  NCAR Command Language (NCL) , 2012 .

[13]  B. Stevens,et al.  The Atmospheric Component of the MPI-M Earth 1 System Model : ECHAM 6 2 , 2012 .

[14]  A. Barrett Why can't models simulate mixed-phase clouds correctly? , 2012 .

[15]  M. Shupe,et al.  Resilience of persistent Arctic mixed-phase clouds , 2012 .

[16]  J. Karlsson,et al.  On the Arctic Wintertime Climate in Global Climate Models , 2011 .

[17]  Wilco Hazeleger,et al.  Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space , 2011 .

[18]  S. Emori,et al.  MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments , 2011 .

[19]  Dian J. Seidel,et al.  Climatological Characteristics of Arctic and Antarctic Surface-Based Inversions* , 2011 .

[20]  M. Tjernström,et al.  Characteristics of water-vapour inversions observed over the Arctic by Atmospheric Infrared Sounder (AIRS) and radiosondes , 2011 .

[21]  Clara Deser,et al.  Arctic Inversion Strength in Climate Models , 2011 .

[22]  J. Gyakum,et al.  The Development of Arctic Air Masses in Northwest Canada and Their Behavior in a Warming Climate , 2011 .

[23]  S. Gualdi,et al.  Effects of Tropical Cyclones on Ocean Heat Transport in a High-Resolution Coupled General Circulation Model , 2011 .

[24]  William B. Rossow,et al.  Synoptically Driven Arctic Winter States , 2011 .

[25]  D. Goldberg Volcanology: Carbon below the sea floor , 2011 .

[26]  T. Takemura,et al.  Geoscientific Model Development MIROC-ESM 2010 : model description and basic results of CMIP 5-20 c 3 m experiments , 2011 .

[27]  E. Volodin,et al.  Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations , 2010 .

[28]  Ramaswamy,et al.  The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3 , 2011 .

[29]  Krista Gaustad,et al.  CLOUDS AND MORE: ARM Climate Modeling Best Estimate Data , 2010 .

[30]  Julien Boé,et al.  Atmospheric inversion strength over polar oceans in winter regulated by sea ice , 2009 .

[31]  Patricia ARPEGE-Climat V5.1 Algorithmic Documentation (2009) , 2009 .

[32]  Julien Boé,et al.  Current GCMs’ Unrealistic Negative Feedback in the Arctic , 2009 .

[33]  S. Yamane,et al.  Influence of low Arctic sea‐ice minima on anomalously cold Eurasian winters , 2009 .

[34]  Sungsu Park,et al.  Intercomparison of model simulations of mixed‐phase clouds observed during the ARM Mixed‐Phase Arctic Cloud Experiment. I: single‐layer cloud , 2009 .

[35]  Michael Tjernström,et al.  The vertical structure of the lower Arctic troposphere analysed from observations and the ERA‐40 reanalysis , 2009 .

[36]  E. Tziperman,et al.  A high‐latitude convective cloud feedback and equable climates , 2008 .

[37]  Deliang Chen,et al.  The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day climate , 2008 .

[38]  V. Kattsov,et al.  The Arctic surface energy budget as simulated with the IPCC AR4 AOGCMs , 2007 .

[39]  Andrew Gettelman,et al.  Relative humidity over Antarctica from radiosondes, satellites, and a general circulation model , 2006 .

[40]  V. Canuto,et al.  Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data , 2006 .

[41]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[42]  M. Latif,et al.  Arctic-North Atlantic Interactions and Multidecadal Variability of the Meridional Overturning Circulation , 2005 .

[43]  G. Danabasoglu,et al.  The Community Climate System Model Version 4 , 2011 .

[44]  A. Holtslag,et al.  Single-Column Model Intercomparison for a Stably Stratified Atmospheric Boundary Layer , 2004 .

[45]  Arctic Monitoring,et al.  Impacts of a warming Arctic : Arctic Climate Impact Assessment , 2004 .

[46]  Acia Impacts of a Warming Arctic: Arctic Climate Impact Assessment , 2004 .

[47]  T. W. Horst,et al.  Near-surface water vapor over polar sea ice is always near ice saturation , 2002 .

[48]  P. Guest,et al.  Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near‐surface conditions and surface energy budget , 2002 .

[49]  J. Katzfey,et al.  A Scheme for Calculation of the Liquid Fraction in Mixed-Phase Stratiform Clouds in Large-Scale Models , 2000 .

[50]  Mark New,et al.  Surface air temperature and its changes over the past 150 years , 1999 .

[51]  Ulrike Lohmann,et al.  Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model , 1996 .

[52]  Jonathan D. W. Kahl,et al.  Low-Level Temperature Inversions of the Eurasian Arctic and Comparisons with Soviet Drifting Station Data , 1992 .

[53]  P. Guest,et al.  The Arctic snow and air temperature budget over sea ice during winter , 1991 .

[54]  J. Curry Interactions among Turbulence, Radiation and Microphysics in Arctic Stratus Clouds , 1986 .

[55]  Judith A. Curry,et al.  On the Formation of Continental Polar Air , 1983 .

[56]  I. Held The Tropospheric Lapse Rate and Climatic Sensitivity: Experiments with a Two-Level Atmospheric Model , 1978 .

[57]  S. Manabe,et al.  The Effects of Doubling the CO2 Concentration on the climate of a General Circulation Model , 1975 .

[58]  B. J. Mason,et al.  Physics of Clouds and Precipitation , 1954, Nature.

[59]  Henry G. Houghton,et al.  On the Physics of Clouds and Precipitation , 1951 .

[60]  H. Wexler COOLING IN THE LOWER ATMOSPHERE AND THE STRUCTURE OF POLAR CONTINENTAL AIR , 1936 .

[61]  H. Sverdrup Norwegian North Polar Expedition with the Maud, 1918-1925. Scientific Results. Vols. II and III. Meteorology. Part I. Discussion. Part II. Tables , 1935 .

[62]  A. Wegener Thermodynamik der Atmosphäre , 1912, Nature.