Sea Urchins as an Inspiration for Robotic Designs

Neuromorphic engineering is the approach to intelligent machine design inspired by nature. Here, we outline possible robotic design principles derived from the neural and motor systems of sea urchins (Echinoida). Firstly, we review the neurobiology and locomotor systems of sea urchins, with a comparative emphasis on differences to animals with a more centralized nervous system. We discuss the functioning and enervation of the tube feet, pedicellariae, and spines, including the limited autonomy of these structures. We outline the design principles behind the sea urchin nervous system. We discuss the current approaches of adapting these principles to robotics, such as sucker-like structures inspired by tube feet and a robotic adaptation of the sea urchin jaw, as well as future directions and possible limitations to using these principles in robots.

[1]  S. Coppard,et al.  The evolution of pedicellariae in echinoids: an arms race against pests and parasites , 2012 .

[2]  C. Young,et al.  Perception and selection of macrophyte detrital falls by the bathyal echinoid Stylocidaris lineata , 1993 .

[3]  Kathryn E. L. Smith,et al.  Covering behavior of deep-water echinoids in Antarctica: possible response to predatory king crabs , 2016 .

[4]  P. Dubois,et al.  Evaluation of the different forces brought into play during tube foot activities in sea stars , 2010, Journal of Experimental Biology.

[5]  J. D. Del Castillo,et al.  Some properties of the action potentials conducted in the spines of the sea urchin Diadema antillarum. , 1985, Comparative biochemistry and physiology. A, Comparative physiology.

[6]  J. Himmelman,et al.  Multiple factors explain the covering behaviour in the green sea urchin, Strongylocentrotus droebachiensis , 2007, Animal Behaviour.

[7]  J. Cobb The fine structure of the pedicellariae of Echinus esculentus (L.): II. The sensory system , 1968 .

[8]  Robert J. Wood,et al.  Echinoderm-Inspired Tube Feet for Robust Robot Locomotion and Adhesion , 2018, IEEE Robotics and Automation Letters.

[9]  J. García-Arrarás,et al.  Neuroanatomy of the tube feet and tentacles in Holothuria glaberrima (Holothuroidea, Echinodermata) , 2010, Zoomorphology.

[10]  D. James Diet, movement, and covering behavior of the sea urchin Toxopneustes roseus in rhodolith beds in the Gulf of California, México , 2000 .

[11]  Extraocular vision in the sea urchin Diadema setosum , 2017 .

[12]  M. Jangoux,et al.  The tube feet of sea urchins and sea stars contain functionally different mutable collagenous tissues , 2005, Journal of Experimental Biology.

[13]  M. Arnone,et al.  Unique system of photoreceptors in sea urchin tube feet , 2011, Proceedings of the National Academy of Sciences.

[14]  J. Graham Ecological and Evolutionary Aspects of Integumentary Respiration: Body Size, Diffusion, and the Invertebrata , 1988 .

[15]  C. Faber,et al.  Systematic comparison and reconstruction of sea urchin (Echinoidea) internal anatomy: a novel approach using magnetic resonance imaging , 2008, BMC Biology.

[16]  Mitsuji Sampei,et al.  Autonomous five legs robot navigation in cluttered environment using fuzzy Q-learning and hybrid coordination node , 2009, 2009 ICCAS-SICE.

[17]  Christopher J. Lowe,et al.  Radical alterations in the roles of homeobox genes during echinoderm evolution , 1997, Nature.

[18]  E. Florey,et al.  Excitatory actions of GABA and of acetyl-choline in sea urchin tube feet. , 1975, Comparative biochemistry and physiology. C: Comparative pharmacology.

[19]  M. Lesser,et al.  Sea urchin tube feet are photosensory organs that express a rhabdomeric-like opsin and PAX6 , 2011, Proceedings of the Royal Society B: Biological Sciences.

[20]  C. Schroeder,et al.  Neuronal Oscillations and Multisensory Interaction in Primary Auditory Cortex , 2007, Neuron.

[21]  J. E. Smith On the Nervous System of the Starfish Marthasterias glacialis (L.) , 1937 .

[22]  B. H. Peters The innervation of spines in the sea-urchin Echinus esculentus L. , 2004, Cell and Tissue Research.

[23]  M. Byrne,et al.  The feeding behaviour of Florometra serratissima (Echinodermata: Crinoidea) , 1981 .

[24]  Konrad Märkel,et al.  Functional anatomy of the valves in the ambulacral system of sea urchins (Echinodermata, Echinoida) , 2005, Zoomorphology.

[25]  Patrick Flammang,et al.  Morphology and tenacity of the tube foot disc of three common European sea urchin species: a comparative study , 2006, Biofouling.

[26]  Martin Leary,et al.  A review of shape memory alloy research, applications and opportunities , 2014 .

[27]  I. Wilkie,et al.  Autotomy as a prelude to regeneration in echinoderms , 2001, Microscopy research and technique.

[28]  Fei Li,et al.  Design and development of starfish-like robot: Soft bionic platform with multi-motion using SMA actuators , 2013, 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[29]  Model nerve net can produce rectilinear, non-diffuse propagation as seen in the skin plexus of sea urchins* , 1990 .

[30]  T. Bullock COMPARATIVE ASPECTS OF SUPERFICIAL CONDUCTION SYSTEMS IN ECHINOIDS AND ASTEROIDS. , 1965, American zoologist.

[31]  P. L. Allen Feeding behaviour of Asterias rubens (L.) on soft bottom bivalves: A study in selective predation , 1983 .

[32]  P. Domenici,et al.  Locomotor performance in the sea urchin Paracentrotus lividus , 2003, Journal of the Marine Biological Association of the United Kingdom.

[33]  A. Sadeghi,et al.  Design and development of innovative adhesive suckers inspired by the tube feet of sea urchins , 2012, 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[34]  M. Hamann,et al.  Chemotactic tube-foot responses of a spongivorous sea starPerknaster fuscus to organic extracts from antarctic sponges , 1994, Journal of Chemical Ecology.

[35]  F. Micheli,et al.  Microalgae on seagrass mimics : Does epiphyte community structure differ from live seagrasses ? , 1998 .

[36]  B. David,et al.  Combining embryology and paleontology: origins of the anterior-posterior axis in echinoids , 2003 .

[37]  Stanislav Gorb,et al.  Adhesion of echinoderm tube feet to rough surfaces , 2005, Journal of Experimental Biology.

[38]  J. García-Arrarás,et al.  Identification of Nerve Plexi in Connective Tissues of the Sea Cucumber Holothuria glaberrima by Using a Novel Nerve-Specific Antibody , 2007, The Biological Bulletin.

[39]  J. García-Arrarás,et al.  Holothurian Nervous System Diversity Revealed by Neuroanatomical Analysis , 2016, PloS one.

[40]  Tool use by four species of Indo-Pacific sea urchins , 2018 .

[41]  B. Argall,et al.  Unraveling multisensory integration: patchy organization within human STS multisensory cortex , 2004, Nature Neuroscience.

[42]  J. Taylor,et al.  A genomic view of the sea urchin nervous system. , 2006, Developmental biology.

[43]  J. Cobb The fine structure of the pedicellariae of Echinus esculentus (L.) , 1968 .

[44]  J. M. Venuti,et al.  Neurosensory and neuromuscular organization in tube feet of the sea urchin Strongylocentrotus purpuratus , 2011, The Journal of comparative neurology.

[45]  Urbashi Mitra,et al.  Effects of underwater communication constraints on the control of marine robot teams , 2009, 2009 Second International Conference on Robot Communication and Coordination.

[46]  Olga R. Zueva,et al.  Organization of glial cells in the adult sea cucumber central nervous system , 2010, Glia.

[47]  A. C. Campbell,et al.  The responses of pedicellariae from Echinus esculentus (L.) , 1968 .

[48]  M. Ohtani,et al.  Peptides controlling stifness of connective tissue in sea cucumbers. , 1998, The Biological bulletin.

[49]  G. Wray,et al.  Ontogeny in the fossil record: diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms , 2007, Paleobiology.

[50]  B. David,et al.  Radial Symmetry, the Anterior/Posterior Axis, and Echinoderm Hox Genes , 2008 .

[51]  John J. Foxe,et al.  Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI study. , 2002, Journal of neurophysiology.

[52]  J. E. Boodin Organization of will. , 1939 .

[53]  M. Cifuentes,et al.  The central nervous system of sea cucumbers (Echinodermata: Holothuroidea) shows positive immunostaining for a chordate glial secretion , 2009, Frontiers in Zoology.

[54]  K. Oiwa,et al.  A novel stiffening factor inducing the stiffest state of holothurian catch connective tissue , 2010, Journal of Experimental Biology.

[55]  R. Amant,et al.  Revisiting the definition of animal tool use , 2008, Animal Behaviour.

[56]  Gustavo Rodríguez Gómez,et al.  Extending a spherical robot for dealing with irregular surfaces: a sea urchin-like robot , 2014, Adv. Robotics.

[57]  Linsen Xu,et al.  The driving mechanism research of six unit soft robots , 2013, 2013 6th IEEE Conference on Robotics, Automation and Mechatronics (RAM).

[58]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[59]  Tatsuo Motokawa,et al.  Coordination between catch connective tissue and muscles through nerves in the spine joint of the sea urchin Diadema setosum , 2015, The Journal of Experimental Biology.

[60]  A. Hejnol,et al.  Embracing the comparative approach: how robust phylogenies and broader developmental sampling impacts the understanding of nervous system evolution , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[61]  Mae L. Seto Marine Robot Autonomy , 2012 .

[62]  Colin G. Barras Morphological innovation associated with the expansion of atelostomate irregular echinoids into fine-grained sediments during the Jurassic , 2008 .

[63]  D. Arendt,et al.  From nerve net to nerve ring, nerve cord and brain — evolution of the nervous system , 2015, Nature Reviews Neuroscience.

[64]  W. Weber,et al.  Ultrastructure of the basiepithelial nerve plexus of the sea urchin, Centrostephanus longispinus , 1977, Cell and Tissue Research.

[65]  Akio Ishiguro,et al.  Moving right arm in the right place: Ophiuroid-inspired omnidirectional robot driven by coupled dynamical systems , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[66]  Patrick Flammang,et al.  The Echinoderm Tube Foot and its Role in Temporary Underwater Adhesion , 2009 .

[67]  R. Mooi Non-respiratory podia of clypeasteroids (Echinodermata, Echinoides) , 2004, Zoomorphology.

[68]  D. C. Lees,et al.  The Covering Response to Surge, Sunlight, and Ultraviolet Light in Lytechinus Anamesus (Echinoidea) , 1972 .