A note on certain Kronecker coefficients

We prove an explicit formula for the tensor product with itself of an irreducible complex representation of the symmetric group defined by a rectangle of height two. We also describe part of the decomposition for the tensor product of representations defined by rectangles of heights two and four. Our results are deduced, through Schur-Weyl duality, from the observation that certain actions on triple tensor products of vector spaces, are multiplicity free.