Markov Chain Monte Carlo and Irreversibility

Markov Chain Monte Carlo (MCMC) methods are statistical methods designed to sample from a given measure π by constructing a Markov chain that has π as invariant measure and that converges to π. Most MCMC algorithms make use of chains that satisfy the detailed balance condition with respect to π; such chains are therefore reversible. On the other hand, recent work [ 18 , 21 , 28 , 29 ] has stressed several advantages of using irreversible processes for sampling. Roughly speaking, irreversible diffusions converge to equilibrium faster (and lead to smaller asymptotic variance as well). In this paper we discuss some of the recent progress in the study of nonreversible MCMC methods. In particular: i) we explain some of the difficulties that arise in the analysis of nonreversible processes and we discuss some analytical methods to approach the study of continuous-time irreversible diffusions; ii) most of the rigorous results on irreversible diffusions are available for continuous-time processes; however, for computational purposes one needs to discretize such dynamics. It is well known that the resulting discretized chain will not, in general, retain all the good properties of the process that it is obtained from. In particular, if we want to preserve the invariance of the target measure, the chain might no longer be reversible. Therefore iii) we conclude by presenting an MCMC algorithm, the SOL-HMC algorithm [ 23 ], which results from a nonreversible discretization of a nonreversible dynamics.

[1]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[2]  Anton Arnold,et al.  Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift , 2014, 1409.5425.

[3]  T. Lelièvre,et al.  Free Energy Computations: A Mathematical Perspective , 2010 .

[4]  Christian P. Robert,et al.  Introducing Monte Carlo Methods with R (Use R) , 2009 .

[5]  A. Stuart,et al.  MCMC methods for sampling function space , 2009 .

[6]  Radford M. Neal,et al.  ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLER , 2000 .

[7]  S. Meyn,et al.  Geometric ergodicity and the spectral gap of non-reversible Markov chains , 2009, 0906.5322.

[8]  G. Pavliotis,et al.  Variance Reduction Using Nonreversible Langevin Samplers , 2015, Journal of statistical physics.

[9]  J. M. Sanz-Serna,et al.  Hybrid Monte Carlo on Hilbert spaces , 2011 .

[10]  Spectral decompositions and $\mathbb{L}^2$-operator normsof toy hypocoercive semi-groups , 2013 .

[11]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[12]  L. Tierney A note on Metropolis-Hastings kernels for general state spaces , 1998 .

[13]  R. Durrett Probability: Theory and Examples , 1993 .

[14]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[15]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[16]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[17]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[18]  Persi Diaconis,et al.  The Markov chain Monte Carlo revolution , 2008 .

[19]  K. Spiliopoulos,et al.  Variance reduction for irreversible Langevin samplers and diffusion on graphs , 2014, 1410.0255.

[20]  G. Pavliotis,et al.  Optimal Non-reversible Linear Drift for the Convergence to Equilibrium of a Diffusion , 2012, 1212.0876.

[21]  David C. Williams To begin at the beginning , 1981 .

[22]  R. Tweedie,et al.  Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .

[23]  K. Spiliopoulos,et al.  Irreversible Langevin samplers and variance reduction: a large deviations approach , 2014, 1404.0105.

[24]  Grazia Vicario,et al.  Calcolo delle Probabilità e Statistica per Ingegneri , 1997 .

[25]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .

[26]  G. A. Pavliotis,et al.  Exponential return to equilibrium for hypoelliptic quadratic systems , 2011, 1106.2326.

[27]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[28]  S. Lazic,et al.  Introducing Monte Carlo Methods with R , 2012 .

[29]  P. Fearnhead,et al.  The Random Walk Metropolis: Linking Theory and Practice Through a Case Study , 2010, 1011.6217.

[30]  A. Stuart,et al.  Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions , 2011, 1112.1392.

[31]  Joris Bierkens,et al.  Non-reversible Metropolis-Hastings , 2014, Stat. Comput..

[32]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[33]  N. Pillai,et al.  A Function Space HMC Algorithm With Second Order Langevin Diffusion Limit , 2013, 1308.0543.

[34]  C. Hwang,et al.  Accelerating diffusions , 2005, math/0505245.

[35]  A. Horowitz A generalized guided Monte Carlo algorithm , 1991 .