Markov Chain Monte Carlo and Irreversibility
暂无分享,去创建一个
[1] M. Ledoux,et al. Analysis and Geometry of Markov Diffusion Operators , 2013 .
[2] Anton Arnold,et al. Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift , 2014, 1409.5425.
[3] T. Lelièvre,et al. Free Energy Computations: A Mathematical Perspective , 2010 .
[4] Christian P. Robert,et al. Introducing Monte Carlo Methods with R (Use R) , 2009 .
[5] A. Stuart,et al. MCMC methods for sampling function space , 2009 .
[6] Radford M. Neal,et al. ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLER , 2000 .
[7] S. Meyn,et al. Geometric ergodicity and the spectral gap of non-reversible Markov chains , 2009, 0906.5322.
[8] G. Pavliotis,et al. Variance Reduction Using Nonreversible Langevin Samplers , 2015, Journal of statistical physics.
[9] J. M. Sanz-Serna,et al. Hybrid Monte Carlo on Hilbert spaces , 2011 .
[10] Spectral decompositions and $\mathbb{L}^2$-operator normsof toy hypocoercive semi-groups , 2013 .
[11] J. Zabczyk,et al. Stochastic Equations in Infinite Dimensions , 2008 .
[12] L. Tierney. A note on Metropolis-Hastings kernels for general state spaces , 1998 .
[13] R. Durrett. Probability: Theory and Examples , 1993 .
[14] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[15] Kristian Kirsch,et al. Methods Of Modern Mathematical Physics , 2016 .
[16] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[17] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[18] Persi Diaconis,et al. The Markov chain Monte Carlo revolution , 2008 .
[19] K. Spiliopoulos,et al. Variance reduction for irreversible Langevin samplers and diffusion on graphs , 2014, 1410.0255.
[20] G. Pavliotis,et al. Optimal Non-reversible Linear Drift for the Convergence to Equilibrium of a Diffusion , 2012, 1212.0876.
[21] David C. Williams. To begin at the beginning , 1981 .
[22] R. Tweedie,et al. Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .
[23] K. Spiliopoulos,et al. Irreversible Langevin samplers and variance reduction: a large deviations approach , 2014, 1404.0105.
[24] Grazia Vicario,et al. Calcolo delle Probabilità e Statistica per Ingegneri , 1997 .
[25] R. Tweedie,et al. Exponential convergence of Langevin distributions and their discrete approximations , 1996 .
[26] G. A. Pavliotis,et al. Exponential return to equilibrium for hypoelliptic quadratic systems , 2011, 1106.2326.
[27] Peter Green,et al. Markov chain Monte Carlo in Practice , 1996 .
[28] S. Lazic,et al. Introducing Monte Carlo Methods with R , 2012 .
[29] P. Fearnhead,et al. The Random Walk Metropolis: Linking Theory and Practice Through a Case Study , 2010, 1011.6217.
[30] A. Stuart,et al. Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions , 2011, 1112.1392.
[31] Joris Bierkens,et al. Non-reversible Metropolis-Hastings , 2014, Stat. Comput..
[32] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[33] N. Pillai,et al. A Function Space HMC Algorithm With Second Order Langevin Diffusion Limit , 2013, 1308.0543.
[34] C. Hwang,et al. Accelerating diffusions , 2005, math/0505245.
[35] A. Horowitz. A generalized guided Monte Carlo algorithm , 1991 .