Different patterns of epileptiform-like activity are generated in the sclerotic hippocampus from patients with drug-resistant temporal lobe epilepsy

[1]  G. Jackson,et al.  FOR THE USE OF STRUCTURAL MRI IN THE CARE OF PATIENTS WITH EPILEPSY : A CONSENSUS TASK FORCE REPORT FROM THE ILAE COMMISSION ON DIAGNOSTIC METHODS , 2019 .

[2]  Maria Thom,et al.  Histopathological Findings in Brain Tissue Obtained during Epilepsy Surgery , 2017, The New England journal of medicine.

[3]  A. Sharan,et al.  Prevalence and Incidence of Drug-Resistant Mesial Temporal Lobe Epilepsy in the United States. , 2017, World neurosurgery.

[4]  Jan-Mathijs Schoffelen,et al.  Frequency-specific directed interactions in the human brain network for language , 2017, Proceedings of the National Academy of Sciences.

[5]  E. Aronica,et al.  International recommendation for a comprehensive neuropathologic workup of epilepsy surgery brain tissue: A consensus Task Force report from the ILAE Commission on Diagnostic Methods , 2016, Epilepsia.

[6]  Uwe Heinemann,et al.  In vitro seizure like events and changes in ionic concentration , 2016, Journal of Neuroscience Methods.

[7]  S. Dudek,et al.  Rediscovering area CA2: unique properties and functions , 2016, Nature Reviews Neuroscience.

[8]  R. Miles,et al.  Hippocampus and epilepsy: Findings from human tissues. , 2015, Revue neurologique.

[9]  E. Cavalheiro,et al.  Drug Resistance in Cortical and Hippocampal Slices from Resected Tissue of Epilepsy Patients: No Significant Impact of P-Glycoprotein and Multidrug Resistance-Associated Proteins , 2015, Front. Neurol..

[10]  M. Okano,et al.  Cohort Study , 2020, Definitions.

[11]  Aristides Gionis,et al.  Confidence bands for time series data , 2014, Data Mining and Knowledge Discovery.

[12]  Jean Gotman,et al.  Dynamics of interictal spikes and high-frequency oscillations during epileptogenesis in temporal lobe epilepsy , 2014, Neurobiology of Disease.

[13]  Michael Buchfelder,et al.  Differential influence of hippocampal subfields to memory formation: insights from patients with temporal lobe epilepsy. , 2014, Brain : a journal of neurology.

[14]  Sang Kun Lee Treatment Strategy for the Patient with Hippocampal Sclerosis Who Failed to the First Antiepileptic Drug , 2014, Journal of epilepsy research.

[15]  M. Vreugdenhil,et al.  Transition between fast and slow gamma modes in rat hippocampus area CA1 in vitro is modulated by slow CA3 gamma oscillations , 2014, The Journal of physiology.

[16]  Maria Thom,et al.  International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: A Task Force report from the ILAE Commission on Diagnostic Methods , 2013, Epilepsia.

[17]  Nathalie Jette,et al.  Pharmacoresistance and the role of surgery in difficult to treat epilepsy , 2012, Nature Reviews Neurology.

[18]  E. Cavalheiro,et al.  Temporal lobe epilepsy with mesial temporal sclerosis: hippocampal neuronal loss as a predictor of surgical outcome. , 2012, Arquivos de neuro-psiquiatria.

[19]  R. Quiroga Spike sorting , 2012, Current Biology.

[20]  H. Scharfman,et al.  Progressive, potassium-sensitive epileptiform activity in hippocampal area CA3 of pilocarpine-treated rats with recurrent seizures , 2011, Epilepsy Research.

[21]  John S Duncan,et al.  The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study , 2011, The Lancet.

[22]  Jesse Jackson,et al.  Fast and Slow Gamma Rhythms Are Intrinsically and Independently Generated in the Subiculum , 2011, The Journal of Neuroscience.

[23]  R. Miles,et al.  Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy , 2011, Nature Neuroscience.

[24]  A. David,et al.  Psychiatric disorders in temporal lobe epilepsy: An overview from a tertiary service in Brazil , 2010, Seizure.

[25]  T. Freund,et al.  The epileptic human hippocampal cornu ammonis 2 region generates spontaneous interictal-like activity in vitro. , 2009, Brain : a journal of neurology.

[26]  C. Elger,et al.  Towards a clinico-pathological classification of granule cell dispersion in human mesial temporal lobe epilepsies , 2009, Acta Neuropathologica.

[27]  Timothy A. Pedley,et al.  Epilepsy : a comprehensive textbook , 2008 .

[28]  E. Cavalheiro,et al.  Granular cell dispersion and bilamination: two distinct histopathological patterns in epileptic hippocampi? , 2007, Epileptic disorders : international epilepsy journal with videotape.

[29]  J. DeFelipe,et al.  Quantitative analysis of parvalbumin-immunoreactive cells in the human epileptic hippocampus , 2007, Neuroscience.

[30]  R. Miles,et al.  Perturbed Chloride Homeostasis and GABAergic Signaling in Human Temporal Lobe Epilepsy , 2007, The Journal of Neuroscience.

[31]  Christophe Bernard,et al.  Hyperexcitability of the CA1 Hippocampal Region during Epileptogenesis , 2007, Epilepsia.

[32]  C. Elger,et al.  A new clinico-pathological classification system for mesial temporal sclerosis , 2007, Acta Neuropathologica.

[33]  Claudia Raue,et al.  Carbamazepine-resistance in the epileptic dentate gyrus of human hippocampal slices. , 2006, Brain : a journal of neurology.

[34]  R. Miledi,et al.  Anomalous levels of Cl- transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Christian Wozny,et al.  The Subiculum: A Potential Site of Ictogenesis in Human Temporal Lobe Epilepsy , 2005, Epilepsia.

[36]  Uwe Heinemann,et al.  Stimulus and Potassium-Induced Epileptiform Activity in the Human Dentate Gyrus from Patients with and without Hippocampal Sclerosis , 2004, The Journal of Neuroscience.

[37]  R. Quian Quiroga,et al.  Unsupervised Spike Detection and Sorting with Wavelets and Superparamagnetic Clustering , 2004, Neural Computation.

[38]  J. Behr,et al.  Comment on "On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro" , 2003, Science.

[39]  Catherine Zahn,et al.  Practice parameter: Temporal lobe and localized neocortical resections for epilepsy , 2003, Neurology.

[40]  R. Miles,et al.  On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro , 2002, Science.

[41]  Z. Borhegyi,et al.  Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus , 2001, Neuroscience.

[42]  W T Blume,et al.  A randomized, controlled trial of surgery for temporal-lobe epilepsy. , 2001, The New England journal of medicine.

[43]  G. Sperk,et al.  Chromogranins as markers of altered hippocampal circuitry in temporal lobe epilepsy , 2001, Annals of neurology.

[44]  F. G. Pike,et al.  Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents , 2000, The Journal of physiology.

[45]  A. Aguzzi,et al.  Selective Alterations in GABAA Receptor Subtypes in Human Temporal Lobe Epilepsy , 2000, The Journal of Neuroscience.

[46]  W. Lanksch,et al.  Alterations of Neuronal Connectivity in Area CA1 of Hippocampal Slices from Temporal Lobe Epilepsy Patients and from Pilocarpine‐Treated Epileptic Rats , 2000, Epilepsia.

[47]  D. Ficker Sudden Unexplained Death and Injury in Epilepsy , 2000, Epilepsia.

[48]  P. V. van Rijen,et al.  Immunohistochemical characterization of mossy fibre sprouting in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. , 2000, Brain : a journal of neurology.

[49]  C. Borck,et al.  Seizure-like events in disinhibited ventral slices of adult rat hippocampus. , 1999, Journal of neurophysiology.

[50]  Christophe Bernard,et al.  Newly formed excitatory pathways provide a substrate for hyperexcitability in experimental temporal lobe epilepsy , 1999, The Journal of comparative neurology.

[51]  W. Lanksch,et al.  Effects of barium on stimulus-induced changes in [K+]o and field potentials in dentate gyrus and area CA1 of human epileptic hippocampus , 1998, Neuroscience Letters.

[52]  A. Kivi,et al.  Effects of barium on stimulus induced changes in extracellular potassium concentration in area CA1 of hippocampal slices from normal and pilocarpine-treated epileptic rats , 1998, Neuroscience Letters.

[53]  R. Grossman,et al.  Disproportionate Loss of CA4 Parvalbumin‐immunoreactive Interneurons in Patients with Ammon's Horn Sclerosis , 1997, Journal of neuropathology and experimental neurology.

[54]  C. Elger,et al.  Properties of a Delayed Rectifier Potassium Current in Dentate Granule Cells Isolated from the Hippocampus of Patients with Chronic Temporal Lobe Epilepsy , 1996, Epilepsia.

[55]  S. Spencer,et al.  Depth electrode studies and intracellular dentate granule cell recordings in temporal lobe epilepsy , 1995, Annals of neurology.

[56]  H. Scharfman Electrophysiological evidence that dentate hilar mossy cells are excitatory and innervate both granule cells and interneurons. , 1995, Journal of neurophysiology.

[57]  H. Scharfman,et al.  Evidence from simultaneous intracellular recordings in rat hippocampal slices that area CA3 pyramidal cells innervate dentate hilar mossy cells. , 1994, Journal of neurophysiology.

[58]  A. Williamson,et al.  Electrophysiological characterization of CA2 pyramidal cells from epileptic humans , 1994, Hippocampus.

[59]  P. Schwartzkroin Epilepsy : models, mechanisms, and concepts , 1993 .

[60]  J. Engel,et al.  The Hans Berger lecture. Functional explorations of the human epileptic brain and their therapeutic implications. , 1990, Electroencephalography and clinical neurophysiology.

[61]  Y. Yaari,et al.  The relationship between interictal and ictal paroxysms in an in vitro model of focal hippocampal epilepsy , 1988, Annals of neurology.

[62]  R. Dingledine,et al.  Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. , 1988, Journal of neurophysiology.

[63]  R. Miles,et al.  Single neurones can initiate synchronized population discharge in the hippocampus , 1983, Nature.

[64]  D. Prince,et al.  Variations in electrophysiological properties of hippocampal neurons in different subfields , 1982, Brain Research.

[65]  D. Amaral A golgi study of cell types in the hilar region of the hippocampus in the rat , 1978, The Journal of comparative neurology.