Plasma induced type conversion in mercury cadmium telluride

The tunable bandgap semiconductor mercury cadmium telluride (MCT) is by far the most efficient detector in the 3–5 μm mid-wave infrared (MWIR) and 8–14 μm long-wave infrared (LWIR) wave bands. It is the current material of choice for high-performance, low-cost infrared focal plane arrays. The present research effort in MCT is aimed at improving materials and device fabrication technology, to achieve high-temperature operation and multi-colour capability for MCT detectors. Plasma induced type conversion in MCT, as an alternative to ion implantation junction formation technology, has received considerable attention during the past few years. In this review, we discuss the salient features of this technology and we give a comparison of plasma and ion implantation junction formation technologies. The post-implant annealing, necessary in implantation technology to produce high-quality photodiodes, is not needed in plasma technology. The results on MWIR detectors demonstrate a state-of-the-art performance with a zero-bias dynamic resistance–junction area product R0A greater than 107 Ω cm2 at 80 K. LWIR diodes have been successfully fabricated by using a hydrogenation process for vacancy doped wafers. An average R0A of 50 Ω cm2 has been reported for these devices. The devices have been found to be stable when baked at 80 °C for ten days.

[1]  Majid Zandian,et al.  Molecular beam epitaxy HgCdTe infrared photovoltaic detectors , 1994 .

[2]  S. Iwasa,et al.  1/f Noise in (Hg, Cd)Te photodiodes , 1980, IEEE Transactions on Electron Devices.

[3]  Y. Nemirovsky,et al.  Surfaces/interfaces of narrow-gap II-VI compounds , 1997 .

[4]  Scanning laser microscopy of reactive ion etching induced n-type conversion in vacancy-doped p-type HgCdTe , 1997 .

[5]  J. Bajaj,et al.  Remote contact LBIC imaging of defects in semiconductors , 1990 .

[6]  A. Akhiyat,et al.  Variable area MWIR diodes on HgCdTe/Si grown by molecular beam epitaxy , 2000 .

[7]  J. Bajaj,et al.  Laser beam induced current imaging of surface nonuniformity at the HgCdTe/ZnS interface , 1988 .

[8]  J. Bajaj,et al.  Spatially resolved characterization of HgCdTe materials and devices by scanning laser microscopy , 1993 .

[9]  B. Nener,et al.  HgCdTe mid-wavelength IR photovoltaic detectors fabricated using plasma induced junction technology , 2000 .

[10]  Pradip Mitra,et al.  Simultaneous MW/LW dual-band MOVPE HgCdTe 64x64 FPAs , 1998, Defense, Security, and Sensing.

[11]  M. Zandian,et al.  A novel simultaneous unipolar multispectral integrated technology approach for HgCdTe IR detectors and focal plane arrays , 2001 .

[12]  C. R. Helms,et al.  Mercury interstitial generation in ion implanted mercury cadmium telluride , 1998 .

[13]  Lester J. Kozlowski,et al.  Uniform low defect density molecular beam epitaxial HgCdTe , 1996 .

[14]  Hee Chul Lee,et al.  Enhancement of the steady state minority carrier lifetime in HgCdTe photodiode using ECR plasma hydrogenation , 1995 .

[15]  J. Bajaj,et al.  A discrete element model of laser beam induced current (LBIC) due to the lateral photovoltaic effect in open-circuit HgCdTe photodiodes , 1995 .

[16]  Philippe Tribolet,et al.  MCT technology challenges for mass production , 2001 .

[17]  J. Bajaj,et al.  Variable-area diode data analysis of surface and bulk effects in MWIR HgCdTe/CdTe/sapphire photodetectors , 1993 .

[18]  H. K. Chung,et al.  Origin of 1/f noise observed in Hg0.7Cd0.3Te variable area photodiode arrays , 1985 .

[19]  J. D. Blackwell,et al.  HgCdTe on sapphire — A new approach to infrared detector arrays , 1985 .

[20]  L. O. Bubulac,et al.  Spatial mapping of electrically active defects in HgCdTe using laser beam‐induced current , 1987 .

[21]  Jan Franc,et al.  Deep p-n junction in Hg1-xCdxTe created by ion milling , 1993 .

[22]  Charles Thomas Elliott New infrared and other applications of narrow-gap semiconductors , 1998, Optics & Photonics.

[23]  Herbert K. Pollehn,et al.  Multidomain smart sensors , 1999, Defense, Security, and Sensing.

[24]  A. Rogalski Analysis of the R0A product in n+-p Hg1−xCdxTe photodiodes , 1988 .

[25]  Neil T. Gordon,et al.  Towards background-limited, room-temperature, infrared photon detectors in the 3–13 μm wavelength range , 1999 .

[26]  D. Edwall,et al.  Improving material characteristics and reproducibility of MBE HgCdTe , 1997 .

[27]  P. Boieriu,et al.  MBE growth and device processing of MWIR HgCdTe on large area Si substrates , 2001 .

[28]  R. E. Bornfreund,et al.  Fabrication of high-performance large-format MWIR focal plane arrays from MBE-grown HgCdTe on 4″ silicon substrates , 2001 .

[29]  F. C. Case,et al.  Independently accessed back-to-back HgCdTe photodiodes: A new dual-band infrared detector , 1995 .

[30]  Antoni Rogalski,et al.  Heterostructure infrared photovoltaic detectors , 2000 .

[31]  Jarek Antoszewski,et al.  Characterization of Hg0.7Cd0.3Te n- on p-type structures obtained by reactive ion etching induced p- to n conversion , 2000 .

[32]  P. Leech,et al.  Novel CH4/H2 metalorganic reactive ion etching of Hg1−xCdxTe , 1991 .

[33]  Renganathan Ashokan,et al.  HgCdTe/CdTe/Si infrared photodetectors grown by MBE for near-room temperature operation , 2001 .

[34]  F. C. Case,et al.  MOCVD of bandgap-engineered HgCdTe p-n-N-P dual-band infrared detector arrays , 1997 .

[35]  Gad Bahir,et al.  Electrical properties of epitaxially grown CdTe passivation for long‐wavelength HgCdTe photodiodes , 1994 .

[36]  M. B. Reine,et al.  Key issues in HgCdTe‐based focal plane arrays: An industry perspective , 1992 .

[37]  L. O. Bubulac,et al.  Defects, diffusion and activation in ion implanted HgCdTe , 1988 .

[38]  Study of interface traps from transient photoconductive decay measurements in passivated HgCdTe , 2001 .

[39]  Michael A. Kinch Fundamental physics of infrared detector materials , 2000 .

[40]  C. T. Elliott,et al.  Type conversion in CdxHg1-xTe by ion beam treatment , 1987 .

[41]  L. O. Bubulac,et al.  Ion implanted junction formation in Hg1−xCdxTe , 1987 .

[42]  A. Tóth,et al.  Type conversion of p-(HgCd)Te using and Ar reactive ion etching , 1996 .

[43]  E. A. Patten,et al.  Molecular beam epitaxial growth and performance of HgCdTe-based simultaneous-mode two-color detectors , 1998 .

[44]  C. Musca,et al.  Current status and issues in the surface passivation technology of mercury cadmium telluride infrared detectors , 1998 .

[45]  A. Kolodny,et al.  Properties of ion-implanted junctions in mercury—cadmium—telluride , 1980, IEEE Transactions on Electron Devices.

[46]  Characterisation of reactive-ion-etching-induced type-conversion in p-type HgCdTe using scanning laser microscopy , 1998 .

[47]  T. Ashley,et al.  Non-equilibrium modes of operation for infrared detectors , 1986 .

[48]  J. Elkind,et al.  Reactive ion etching of HgCdTe with methane and hydrogen , 1992 .

[49]  L. Faraone,et al.  Characterisation of dark current in novel Hg1−xCdxTe mid-wavelength infrared photovoltaic detectors based on n-on-p junctions formed by plasma-induced type conversion , 2000 .

[50]  J. Wallmark A New Semiconductor Photocell Using Lateral Photoeffect , 1957, Proceedings of the IRE.

[51]  E. A. Patten,et al.  Molecular beam epitaxial growth and performance of integrated multispectral HgCdTe photodiodes for the detection of mid-wave infrared radiation , 1998 .

[52]  E. A. Patten,et al.  High performance HgCdTe two-color infrared detectors grown by molecular beam epitaxy , 1997 .