Output feedback control of linear fractional transformation systems subject to actuator saturation

ABSTRACT In this paper, the control problem for a class of linear parameter varying (LPV) plant subject to actuator saturation is investigated. For the saturated LPV plant depending on the scheduling parameters in linear fractional transformation (LFT) fashion, a gain-scheduled output feedback controller in the LFT form is designed to guarantee the stability of the closed-loop LPV system and provide optimised disturbance/error attenuation performance. By using the congruent transformation, the synthesis condition is formulated as a convex optimisation problem in terms of a finite number of LMIs for which efficient optimisation techniques are available. The nonlinear inverted pendulum problem is employed to demonstrate the effectiveness of the proposed approach. Moreover, the comparison between our LPV saturated approach with an existing linear saturated method reveals the advantage of the LPV controller when handling nonlinear plants.

[1]  Bin Zhou,et al.  Analysis and design of discrete-time linear systems with nested actuator saturations , 2013, Syst. Control. Lett..

[2]  Luca Zaccarian,et al.  Output feedback design for saturated linear plants using deadzone loops , 2009, Autom..

[3]  Fen Wu,et al.  Induced L2‐norm control for LPV systems with bounded parameter variation rates , 1996 .

[4]  Tingshu Hu,et al.  Analysis of linear systems in the presence of actuator saturation and I-disturbances , 2004, Autom..

[5]  Fen Wu,et al.  Gain-scheduling control of LFT systems using parameter-dependent Lyapunov functions , 2005, Proceedings of the 2005, American Control Conference, 2005..

[6]  Chung-Shi Tseng,et al.  Analysis and synthesis of robust H ∞ static output feedback control subject to actuator saturation , 2011, Int. J. Syst. Sci..

[7]  A. Sideris,et al.  H/sub /spl infin// control with parametric Lyapunov functions , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[8]  A. Teel,et al.  Stability and performance for saturated systems via quadratic and non-quadratic Lyapunov functions ∗ , 2022 .

[9]  Bin Zhou,et al.  Global stabilization of periodic linear systems by bounded controls with applications to spacecraft magnetic attitude control , 2015, Autom..

[10]  Stephen P. Boyd,et al.  Analysis of linear systems with saturation using convex optimization , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[11]  Eduardo Sontag,et al.  On Finite-Gain Stabilizability of Linear Systems Subject to Input Saturation , 1996 .

[12]  Gérard Scorletti,et al.  Output Feedback Control with Input Saturations: LMI Design Approaches , 2001, Eur. J. Control.

[13]  Luca Zaccarian,et al.  Stability and Performance for Saturated Systems via Quadratic and Nonquadratic Lyapunov Functions , 2006, IEEE Transactions on Automatic Control.

[14]  Zongli Lin H∞-almost disturbance decoupling with internal stability for linear systems subject to input saturation , 1997, IEEE Trans. Autom. Control..

[15]  Tingshu Hu,et al.  Control Systems with Actuator Saturation: Analysis and Design , 2001 .

[16]  Jan C. Willems,et al.  Almost disturbance decoupling with internal stability , 1989 .

[17]  G. Scorletti,et al.  Improved linear matrix inequality conditions for gain scheduling , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[18]  John M. Watts,et al.  Analysis and synthesis , 1985 .

[19]  Jean-Marc Biannic,et al.  Convex Design of a Robust Antiwindup Controller for an LFT Model , 2007, IEEE Transactions on Automatic Control.

[20]  Fen Wu,et al.  A generalized LPV system analysis and control synthesis framework , 2001 .

[21]  Zongli Lin,et al.  Set invariance analysis and gain-scheduling control for LPV systems subject to actuator saturation , 2002, Syst. Control. Lett..

[22]  Sophie Tarbouriech,et al.  Intelligent anti‐windup for systems with input magnitude saturation , 1998 .

[23]  Sophie Tarbouriech,et al.  Control of Uncertain Systems with Bounded Inputs , 1997 .

[24]  Fulvio Forni,et al.  Gain-scheduled, model-based anti-windup for LPV systems , 2010, Autom..

[25]  Tingshu Hu,et al.  Output regulation of linear systems with bounded continuous feedback , 2004, IEEE Transactions on Automatic Control.

[26]  Zongli Lin,et al.  Min-max MPC algorithm for LPV systems subject to input saturation , 2005 .

[27]  Pierre Apkarian,et al.  Advanced gain-scheduling techniques for uncertain systems , 1998, IEEE Trans. Control. Syst. Technol..

[28]  Michael Athans,et al.  Guaranteed properties of gain scheduled control for linear parameter-varying plants , 1991, Autom..

[29]  Bei Lu,et al.  LPV Antiwindup Compensation for Enhanced Flight Control Performance , 2003 .

[30]  Bei Lu,et al.  Linear Parameter-Varying Antiwindup Compensation for Enhanced Flight Control Performance , 2005 .

[31]  Andrew R. Teel,et al.  The almost disturbance decoupling problem with internal stability for linear systems subject to input saturation - state feedback case , 1996, Autom..

[32]  Zongli Lin,et al.  Disturbance attenuation by output feedback for linear systems subject to actuator saturation , 2009 .

[33]  M. Athans,et al.  Gain Scheduling: Potential Hazards and Possible Remedies , 1992, 1991 American Control Conference.

[34]  Zongli Lin,et al.  Output Feedback Stabilization of Linear Systems With Actuator Saturation , 2007, IEEE Transactions on Automatic Control.

[35]  A. Packard Gain scheduling via linear fractional transformations , 1994 .

[36]  Tingshu Hu,et al.  Control Systems with Actuator Saturation: Analysis and Design , 2001 .

[37]  Carsten W. Scherer,et al.  LPV control and full block multipliers , 2001, Autom..

[38]  Faryar Jabbari,et al.  Disturbance attenuation for systems with input saturation: An LMI approach , 1999, IEEE Trans. Autom. Control..

[39]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[40]  A. Packard,et al.  Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback , 1994 .

[41]  Matthew C. Turner,et al.  Coprime factor based anti-windup synthesis for parameter-dependent systems , 2009, Syst. Control. Lett..

[42]  Andrew R. Teel,et al.  Control of linear systems with saturating actuators , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[43]  Athanasios Sideris,et al.  H ∞ control with parametric Lyapunov functions , 1997 .

[44]  S. Tarbouriech,et al.  Control design for linear systems with saturating actuators and /spl Lscr//sub 2/-bounded disturbances , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[45]  D. Bernstein,et al.  A chronological bibliography on saturating actuators , 1995 .

[46]  Eduardo Sontag,et al.  A general result on the stabilization of linear systems using bounded controls , 1994, IEEE Trans. Autom. Control..

[47]  Y. Chitour On the Lp-stabilization of the double integrator subject to input saturation , 2001 .