The planarity of heteroatom analogues of benzene: Energy component analysis and the planarization of hexasilabenzene

There are various nonplanar heteroatom analogues of benzene—cyclic 6π electron systems—and among them, hexasilabenzene (Si6H6) is well known as a typical example. To determine the factors that control their planarity, quantum chemical calculations and an energy component analysis were performed. The results show that the energy components mainly controlling the planarity of benzene and hexasilabenzene are different. For hexasilabenzene, electron repulsion energy was found to be significantly important for the planarity. The application of the pseudo Jahn–Teller effect and the Carter–Goddard–Malrieu–Trinquier model for the interpretation of the planarity of the benzene analogues was also investigated. Furthermore, based on the quantitative results, it was revealed that the planarization of hexasilabenzene is realized by introducing substituents with π‐accepting ability, such as the boryl group, that bring about a reduction of the π‐electron repulsion on the silicon skeleton. © 2018 Wiley Periodicals, Inc.

[1]  Frank Weinhold,et al.  Natural hybrid orbitals , 1980 .

[2]  H. Rzepa,et al.  Ring currents in the dismutational aromatic Si6R6. , 2010, Angewandte Chemie.

[3]  G. Trinquier,et al.  Nonclassical distortions at multiple bonds , 1987 .

[4]  A. Sekiguchi,et al.  Cyclic polyenes of heavy group 14 elements: new generation ligands for transition-metal complexes. , 2008, Chemical Society reviews.

[5]  J. S. Binkley,et al.  Derivative studies in hartree-fock and møller-plesset theories , 2009 .

[6]  S. Nagase,et al.  Hexasilabenzene (Si6H6). An ab initio theoretical study of its aromaticity and relative stability , 1985 .

[7]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[8]  Jing Ma,et al.  Relaxation of ring strain by introduction of a double bond , 2001 .

[9]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .

[10]  Hermann Stoll,et al.  Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr , 1989 .

[11]  N. Tokitoh,et al.  Germabenzenylpotassium: A Germanium Analogue of a Phenyl Anion. , 2017, Angewandte Chemie.

[12]  H. Rzepa,et al.  A Tricyclic Aromatic Isomer of Hexasilabenzene , 2010, Science.

[13]  W. Goddard,et al.  Thermochemistry of silaethylene and methylsilylene from experiment and theory , 1988 .

[14]  A. Boldyrev,et al.  Si(6-n)C(n)H6 (n = 0-6) series: when do silabenzenes become planar and global minima? , 2012, The journal of physical chemistry. A.

[15]  M. Yamashita,et al.  An anionic aluminabenzene bearing aromatic and ambiphilic contributions. , 2014, Journal of the American Chemical Society.

[16]  Axel D. Becke,et al.  Density‐functional thermochemistry. IV. A new dynamical correlation functional and implications for exact‐exchange mixing , 1996 .

[17]  M. Repiský,et al.  Dismutational and global-minimum isomers of heavier 1,4-dimetallatetrasilabenzenes of Group 14. , 2014, Angewandte Chemie.

[18]  Mark S. Gordon,et al.  Stabilities and Energetics of Inorganic Benzene Isomers: Prismanes , 1994 .

[19]  A. Bondi van der Waals Volumes and Radii , 1964 .

[20]  M. Yamashita,et al.  An Isolable Bismabenzene: Synthesis, Structure, and Reactivity. , 2016, Journal of the American Chemical Society.

[21]  D. Stalke,et al.  An experimental charge density study of two isomers of hexasilabenzene. , 2013, Angewandte Chemie.

[22]  T. Müller,et al.  News from silicon: an isomer of hexasilabenzene and a metal-silicon triple bond. , 2010, Angewandte Chemie.

[23]  R. Pearson The second-order Jahn-Teller effect , 1983 .

[24]  F. Teixidor,et al.  A simple link between hydrocarbon and borohydride chemistries. , 2013, Chemistry.

[25]  K. Baldridge,et al.  The Silabenzenes: Structure, Properties, and Aromaticity , 2000 .

[26]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[27]  Mark S. Gordon,et al.  A comparative study of the bonding in heteroatom analogues of benzene , 1992 .

[28]  A. Datta,et al.  Understanding of the Buckling Distortions in Silicene , 2012 .

[29]  Kirk A. Peterson,et al.  Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2→H2+H reaction , 1994 .

[30]  T. Veszprémi,et al.  Molecular Tailoring: Reaction Path Control with Bulky Substituents , 2012 .

[31]  M. Ratner,et al.  Electronic Structure and Potential Reactivity of Silaaromatic Molecules. , 2016, The journal of physical chemistry. A.

[32]  G. Trinquier,et al.  Trans bending at double bonds. Scrutiny of various rationales through valence-bond analysis , 1990 .

[33]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[34]  S. Nagase,et al.  Hexasilabenzene (Si6H6). Is the benzene-like D6h structure stable? , 1987 .

[35]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[36]  L. Curtiss,et al.  Gaussian‐1 theory: A general procedure for prediction of molecular energies , 1989 .

[37]  William A. Goddard,et al.  Relation between singlet-triplet gaps and bond energies , 1986 .

[38]  K. Ohno,et al.  Systematic Search for Isomerization Pathways of Hexasilabenzene for Finding Its Kinetic Stability , 2009 .

[39]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[40]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[41]  W. D. Hobey Vibronic Interaction of Nearly Degenerate States in Substituted Benzene Anions , 1965 .

[42]  T. Kudo,et al.  Theoretical molecular design of hexasilabenzene analogues aiming for the thermodynamic and kinetic stabilization , 2018 .

[43]  E. Jemmis,et al.  Aromaticity in X(3)Y(3)H(6) (X = B, Al, Ga; Y = N, P, As), X(3)Z(3)H(3) (Z = O, S, Se), and Phosphazenes. Theoretical Study of the Structures, Energetics, and Magnetic Properties. , 1998, Inorganic chemistry.

[44]  Clémence Corminboeuf,et al.  Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. , 2005, Chemical reviews.

[45]  Z. Benedek,et al.  Molecular tailoring: a possible synthetic route to hexasilabenzene. , 2014, Dalton transactions.