Nonadiabatic geometric quantum computation with optimal control on superconducting circuits

Quantum gates, which are the essential building blocks of quantum computers, are very fragile. Thus, to realize robust quantum gates with high fidelity is the ultimate goal of quantum manipulation. Here, we propose a nonadiabatic geometric quantum computation scheme on superconducting circuits to engineer arbitrary quantum gates, which share both the robust merit of geometric phases and the capacity to combine with optimal control technique to further enhance the gate robustness. Specifically, in our proposal, arbitrary geometric single-qubit gates can be realized on a transmon qubit, by a resonant microwave field driving, with both the amplitude and phase of the driving being time-dependent. Meanwhile, nontrivial two-qubit geometric gates can be implemented by two capacitively coupled transmon qubits, with one of the transmon qubits’ frequency being modulated to obtain effective resonant coupling between them. Therefore, our scheme provides a promising step towards fault-tolerant solid-state quantum computation.

[1]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  Frank Wilczek,et al.  Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .

[3]  Aharonov,et al.  Phase change during a cyclic quantum evolution. , 1987, Physical review letters.

[4]  Jens Siewert,et al.  Detection of geometric phases in superconducting nanocircuits , 2000, Nature.

[5]  W Xiang-Bin,et al.  Nonadiabatic conditional geometric phase shift with NMR. , 2001, Physical review letters.

[6]  W. Xiang-bin,et al.  Erratum: Nonadiabatic Conditional Geometric Phase Shift with NMR [Phys. Rev. Lett. 87, 097901 (2001)] , 2002 .

[7]  Shi-Liang Zhu,et al.  Implementation of universal quantum gates based on nonadiabatic geometric phases. , 2002, Physical review letters.

[8]  Frederick W Strauch,et al.  Quantum logic gates for coupled superconducting phase qubits. , 2003, Physical review letters.

[9]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[10]  Paolo Zanardi,et al.  Robustness of non-Abelian holonomic quantum gates against parametric noise , 2004 .

[11]  Shi-Liang Zhu,et al.  Geometric quantum gates that are robust against stochastic control errors , 2005 .

[12]  R. J. Schoelkopf,et al.  Observation of Berry's Phase in a Solid-State Qubit , 2007, Science.

[13]  Jay M. Gambetta,et al.  Preparation and measurement of three-qubit entanglement in a superconducting circuit , 2010, Nature.

[14]  D. M. Tong,et al.  Non-adiabatic holonomic quantum computation , 2011, 1107.5127.

[15]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[16]  J. M. Gambetta,et al.  Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator , 2010, 1011.1949.

[17]  D. M. Tong,et al.  Robustness of nonadiabatic holonomic gates , 2012, 1204.5144.

[18]  Erik Sjöqvist,et al.  Nonadiabatic holonomic quantum computation in decoherence-free subspaces. , 2012, Physical review letters.

[19]  N. Zanghí,et al.  On the stability of quantum holonomic gates , 2012, 1209.1693.

[20]  D. Alonso,et al.  Optimally robust shortcuts to population inversion in two-level quantum systems , 2012, 1206.1691.

[21]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[22]  S Guérin,et al.  Robust quantum control by a single-shot shaped pulse. , 2013, Physical review letters.

[23]  Franco Nori,et al.  Comparison of the sensitivity to systematic errors between nonadiabatic non-Abelian geometric gates and their dynamical counterparts , 2016, 1603.08061.

[24]  Zhihao Gong,et al.  Simulating a topological transition in a superconducting phase qubit by fast adiabatic trajectories , 2017, 1712.10089.

[25]  Christiane P. Koch,et al.  Charting the circuit QED design landscape using optimal control theory , 2016, 1606.08825.

[26]  D. M. Tong,et al.  Rydberg-atom-based scheme of nonadiabatic geometric quantum computation , 2017, 1711.04917.

[27]  C. Lam,et al.  Non-Abelian holonomic transformation in the presence of classical noise , 2017, 1701.08234.

[28]  F. Nori,et al.  Microwave photonics with superconducting quantum circuits , 2017, 1707.02046.

[29]  Yu Zhang,et al.  One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED , 2018, Frontiers of Physics.

[30]  Gaurav Bhole,et al.  Practical pulse engineering: Gradient ascent without matrix exponentiation , 2018, 1802.07147.

[31]  Yi Yin,et al.  The experimental realization of high-fidelity ‘shortcut-to-adiabaticity’ quantum gates in a superconducting Xmon qubit , 2018, New Journal of Physics.

[32]  D. Russell,et al.  Parametrically Activated Entangling Gates Using Transmon Qubits , 2017, Physical Review Applied.

[33]  Sabrina Hong,et al.  Demonstration of universal parametric entangling gates on a multi-qubit lattice , 2017, Science Advances.

[34]  Tao Chen,et al.  Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings. , 2018, 1806.03886.

[35]  Tao Chen,et al.  Nonadiabatic Geometric Quantum Computation with Parametrically Tunable Coupling , 2018, Physical Review Applied.

[36]  Peter Sprenger,et al.  Overcoming synthesizer phase noise in quantum sensing , 2019, Quantum Eng..

[37]  Zhensheng Zhang,et al.  Experimental Realization of Nonadiabatic Shortcut to Non-Abelian Geometric Gates. , 2018, Physical review letters.

[38]  Xin Wang,et al.  Plug-and-Play Approach to Nonadiabatic Geometric Quantum Gates. , 2018, Physical review letters.

[39]  T. Bækkegaard,et al.  Realization of efficient quantum gates with a superconducting qubit-qutrit circuit , 2018, Scientific Reports.

[40]  Tongcang Li,et al.  Nonadiabatic dynamics and geometric phase of an ultrafast rotating electron spin. , 2018, Science bulletin.

[41]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[42]  Z. Xue,et al.  Single-step multipartite entangled states generation from coupled circuit cavities , 2019, Frontiers of Physics.

[43]  Yi Yin,et al.  Experimental realization of nonadiabatic geometric gates with a superconducting Xmon qubit , 2019, 1909.09970.

[44]  Guang-Can Guo,et al.  Experimental demonstration of suppressing residual geometric dephasing. , 2019, Science bulletin.

[45]  H. Fan,et al.  12 superconducting qubits for quantum walks , 2019, Frontiers of Physics.

[46]  Morten Kjaergaard,et al.  Superconducting Qubits: Current State of Play , 2019, Annual Review of Condensed Matter Physics.

[47]  Wen Zheng,et al.  Realization of Superadiabatic Two-Qubit Gates Using Parametric Modulation in Superconducting Circuits , 2019, Physical Review Applied.

[48]  Z. Xue,et al.  Experimental Implementation of Universal Nonadiabatic Geometric Quantum Gates in a Superconducting Circuit. , 2019, Physical review letters.

[49]  Tao Chen,et al.  Fast Holonomic Quantum Computation on Superconducting Circuits With Optimal Control , 2019, Advanced Quantum Technologies.

[50]  Keren Li Eliminating the noise from quantum computing hardware , 2020 .

[51]  G. Guo,et al.  Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum Gates with Optimal Control in a Trapped Ion , 2020, 2006.04609.