Right ventricular plasticity in a porcine model of chronic pressure overload.

[1]  R. Shandas,et al.  Assessment of N-Terminal Prohormone B-Type Natriuretic Peptide as a Measure of Vascular and Ventricular Function in Pediatric Pulmonary Arterial Hypertension , 2015, Pulmonary circulation.

[2]  E. Fadel,et al.  Chronic Thromboembolic Pulmonary Hypertension and Assessment of Right Ventricular Function in the Piglet. , 2015, Journal of visualized experiments : JoVE.

[3]  Vittorio Pengo,et al.  Chronic thromboembolic pulmonary hypertension. , 2006, Journal of the American College of Cardiology.

[4]  N. Westerhof,et al.  Accurate assessment of load-independent right ventricular systolic function in patients with pulmonary hypertension. , 2013, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[5]  W. Hopkins Right ventricular performance in congenital heart disease: a physiologic and pathophysiologic perspective. , 2012, Cardiology clinics.

[6]  R. Naeije,et al.  Prolonged overcirculation-induced pulmonary arterial hypertension as a cause of right ventricular failure. , 2011, European heart journal.

[7]  D. Rizopoulos,et al.  Usefulness of serial N-terminal pro-B-type natriuretic peptide measurements for determining prognosis in patients with pulmonary arterial hypertension. , 2011, The American journal of cardiology.

[8]  J. Barberà,et al.  Chronic Thromboembolic Pulmonary Hypertension (CTEPH): Results From an International Prospective Registry , 2011, Circulation.

[9]  V. Fuster,et al.  Right ventriculo-arterial coupling in pulmonary hypertension: a magnetic resonance study , 2011, Heart.

[10]  E. Fadel,et al.  A Reliable Piglet Model Of Chronic Thrombo-Embolic Pulmonary Hypertension , 2011, ATS 2011.

[11]  V. Fuster,et al.  Evaluation of right ventriculoarterial coupling in pulmonary hypertension: a magnetic resonance study , 2011, Journal of Cardiovascular Magnetic Resonance.

[12]  Christopher S Coffey,et al.  Predicting Survival in Pulmonary Arterial Hypertension: Insights From the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL) , 2010, Circulation.

[13]  M. Humbert,et al.  Survival in Patients With Idiopathic, Familial, and Anorexigen-Associated Pulmonary Arterial Hypertension in the Modern Management Era , 2010, Circulation.

[14]  M. Humbert,et al.  Pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: pathophysiology , 2010, European Respiratory Review.

[15]  J. Mair Biochemistry of B-type natriuretic peptide – where are we now? , 2008, Clinical chemistry and laboratory medicine.

[16]  Edward G Lakatta,et al.  Arterial-ventricular coupling: mechanistic insights into cardiovascular performance at rest and during exercise. , 2008, Journal of applied physiology.

[17]  C. Greyson,et al.  Pathophysiology of right ventricular failure , 2008, Critical care medicine.

[18]  Bernard Lambermont,et al.  The role of right ventricular-pulmonary arterial coupling to differentiate between effects of inotropic agents in experimental right heart failure. , 2006, Critical care medicine.

[19]  David A. Kass,et al.  Ventriculo-arterial coupling: Concepts, assumptions, and applications , 2006, Annals of Biomedical Engineering.

[20]  Titus Kuehne,et al.  Magnetic Resonance Imaging Analysis of Right Ventricular Pressure-Volume Loops: In Vivo Validation and Clinical Application in Patients With Pulmonary Hypertension , 2004, Circulation.

[21]  K. Kangawa,et al.  Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. , 2000, Circulation.

[22]  P Steendijk,et al.  Improved contractile performance of right ventricle in response to increased RV afterload in newborn lamb. , 2000, American journal of physiology. Heart and circulatory physiology.

[23]  A. Redington,et al.  Acute right ventricular dilatation in response to ischemia significantly impairs left ventricular systolic performance. , 1999, Circulation.

[24]  E. Bauer,et al.  Upregulated and downregulated transcription of myocardial genes after pulmonary artery banding in pigs. , 1998, The Annals of thoracic surgery.

[25]  P. Dartevelle,et al.  Lung reperfusion injury after chronic or acute unilateral pulmonary artery occlusion. , 1998, American journal of respiratory and critical care medicine.

[26]  B. Groves,et al.  Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. , 1997, The Journal of clinical investigation.

[27]  D. Burkhoff,et al.  Assessment of right ventricular contractile state with the conductance catheter technique in the pig. , 1995, Cardiovascular research.

[28]  S. Rich,et al.  Understanding right and left ventricular systolic function and interactions at rest and with exercise in primary pulmonary hypertension. , 1995, The American journal of cardiology.

[29]  T. Musch,et al.  Ca2+-dependent heterometric and homeometric autoregulation in hypertrophied rat heart. , 1989, The American journal of physiology.

[30]  K Sagawa,et al.  Editorial: The End‐systolic Pressure‐Volume Relation of the Ventricle Definition, Modifications and Clinical Use , 1981 .

[31]  A A Shoukas,et al.  Instantaneous Pressure‐Volume Relationship of the Canine Right Ventricle , 1979, Circulation research.

[32]  G. T. Marzan,et al.  Body surface area of female swine. , 1973, Journal of animal science.