QCM-D analysis of the performance of blocking agents on gold and polystyrene surfaces.
暂无分享,去创建一个
With today's developments of biosensors and medical implants comes the need for efficient reduction of nonspecific binding. We report on a comparison of the ability of traditionally used blocking agents and poly(ethylene glycol) (PEG) derivatives to prevent protein adsorption on both gold and polystyrene surfaces. The adsorption kinetics of blocking molecules and proteins was monitored gravimetrically using quartz crystal microbalance with dissipation (QCM-D). The resistance to nonspecific adsorption was evaluated on gold and polystyrene surfaces coated with bovine serum albumin (BSA) or casein, gold coated with three different 6-11 ethylene glycol (EG) long hydroxyl- or methoxy-terminated PEG-thiolates and polystyrene blocked with a PLL-g-PEG or three different 12 EG long benzyl-PEG-derivatives. The prevention of protein adsorption on the coated surfaces was evaluated by monitoring the mass uptake at the addition of both pure prostate specific antigen (PSA) and seminal plasma. We demonstrate that on pure gold the PEG-thiols are superior to the other blocking molecules tested, with the end group and length of the PEG-thiols used being of minor importance. On polystyrene surfaces blocking with PLL-g-PEG, BSA and casein gave the best results. These results have an impact on further development of an optimized immunoassay protocol.