Universal Algorithms for Learning Theory Part I : Piecewise Constant Functions
暂无分享,去创建一个
Wolfgang Dahmen | Albert Cohen | Ronald A. DeVore | Vladimir N. Temlyakov | Peter Binev | R. DeVore | W. Dahmen | A. Cohen | V. Temlyakov | P. Binev
[1] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[2] G. Kerkyacharian,et al. Minimax or maxisets , 2002 .
[3] P. Massart,et al. Gaussian model selection , 2001 .
[4] Servane Gey,et al. Model selection for CART regression trees , 2005, IEEE Transactions on Information Theory.
[5] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[6] Adam Krzyzak,et al. A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.
[7] Vladimir Temlyakov,et al. The Entropy in Learning Theory. Error Estimates , 2007 .
[8] Ronald A. DeVore,et al. Fast computation in adaptive tree approximation , 2004, Numerische Mathematik.
[9] D. Donoho. CART AND BEST-ORTHO-BASIS: A CONNECTION' , 1997 .
[10] Albert Cohen,et al. Maximal Spaces with Given Rate of Convergence for Thresholding Algorithms , 2001 .
[11] I. Johnstone,et al. Wavelet Shrinkage: Asymptopia? , 1995 .
[12] I. Johnstone,et al. Density estimation by wavelet thresholding , 1996 .
[13] I. Johnstone,et al. Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .
[14] Felipe Cucker,et al. On the mathematical foundations of learning , 2001 .
[15] I. Daubechies,et al. Tree Approximation and Optimal Encoding , 2001 .
[16] Andrew R. Barron,et al. Complexity Regularization with Application to Artificial Neural Networks , 1991 .
[17] Y. Baraud. Model selection for regression on a random design , 2002 .
[18] I. Johnstone,et al. Minimax estimation via wavelet shrinkage , 1998 .
[19] L. Birge,et al. Model selection via testing: an alternative to (penalized) maximum likelihood estimators , 2006 .