Nonlinear Control of Systems Preceded by Preisach Hysteresis Description: A Prescribed Adaptive Control Approach

When systems are preceded by hysteresis nonlinearities, many controller strategies have been developed with various hysteresis models, especially in the past decade. Among the hysteresis models, the Preisach model has a very general and well-established mathematical structure. However, designs of controllers that guarantee the closed-loop stability of nonlinear systems having the Preisach hysteresis representation are still a challenging issue in the literature. In this paper, we will attempt to demonstrate a solution in which a stable controller can be designed for nonlinear systems that couple with Preisach hysteresis model. The key is that by utilizing the so-called Preisach plane, the Preisach model is reexpressed into a control-oriented form, in which the input signal is explicitly expressed. It is then possible to fuse available control techniques with the Preisach model designing stable controllers. As an illustration to show the advantage of the developed control-oriented form, a prescribed adaptive control approach is adopted to ensure the transient and steady-state performance of the tracking error. The effectiveness of the control scheme is validated by the experimental results.

[1]  Bin Yao,et al.  Adaptive Robust Precision Motion Control of a Piezoelectric Positioning Stage , 2008, IEEE Transactions on Control Systems Technology.

[2]  Tieshan Li,et al.  Adaptive Output Feedback Control of Uncertain Nonlinear Systems With Hysteresis Nonlinearity , 2012, IEEE Transactions on Automatic Control.

[3]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[4]  Han Ding,et al.  Motion Control of Piezoelectric Positioning Stages: Modeling, Controller Design, and Experimental Evaluation , 2013, IEEE/ASME Transactions on Mechatronics.

[5]  Wen-Yuh Jywe,et al.  Precision tracking control of a piezoelectric-actuated system , 2008 .

[6]  R. Iyer,et al.  Control of hysteretic systems through inverse compensation , 2009, IEEE Control Systems.

[7]  John S. Baras,et al.  Adaptive identification and control of hysteresis in smart materials , 2005, IEEE Transactions on Automatic Control.

[8]  Chia-Hsiang Menq,et al.  Hysteresis compensation in electromagnetic actuators through Preisach model inversion , 2000 .

[9]  A. Kurdila,et al.  Hysteresis Modeling of SMA Actuators for Control Applications , 1998 .

[10]  Musa Jouaneh,et al.  Modeling hysteresis in piezoceramic actuators , 1995 .

[11]  Santosh Devasia,et al.  Iterative feedforward compensation of hysteresis in piezo positioners , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[12]  J. Willems,et al.  Every storage function is a state function , 1997 .

[13]  John S. Baras,et al.  Modeling and control of a magnetostrictive actuator , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[14]  David W. L. Wang,et al.  Passivity-based stability and control of hysteresis in smart actuators , 2001, IEEE Trans. Control. Syst. Technol..

[15]  Robert C. Rogers,et al.  Control of a hysteretic actuator using inverse hysteresis compensation , 1998, Smart Structures.

[16]  John S. Baras,et al.  Modeling and control of hysteresis in magnetostrictive actuators , 2004, Autom..

[17]  Jing Wang,et al.  Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients , 2003, IEEE Trans. Autom. Control..

[18]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[19]  Charalampos P. Bechlioulis,et al.  Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems , 2009, Autom..

[20]  J. Wen,et al.  Preisach modeling of piezoceramic and shape memory alloy hysteresis , 1995, Proceedings of International Conference on Control Applications.

[21]  Alberto Isidori,et al.  Nonlinear control systems: an introduction (2nd ed.) , 1989 .

[22]  Chun-Yi Su,et al.  Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis , 2000, IEEE Trans. Autom. Control..

[23]  Ping Ge,et al.  Tracking control of a piezoceramic actuator , 1996, IEEE Trans. Control. Syst. Technol..

[24]  Subhash Rakheja,et al.  Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis , 2005, IEEE Transactions on Automatic Control.

[25]  F. Preisach Über die magnetische Nachwirkung , 1935 .

[26]  Charalampos P. Bechlioulis,et al.  Robust Adaptive Control of Feedback Linearizable MIMO Nonlinear Systems With Prescribed Performance , 2008, IEEE Transactions on Automatic Control.

[27]  R. Venkataraman,et al.  Approximate inversion of hysteresis: theory and numerical results [magnetostrictive actuator] , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[28]  Zhengzheng Hu,et al.  Homogenized energy model for characterizing polarization and strains in hysteretic ferroelectric materials: Material properties and uniaxial model development , 2012 .

[29]  Rob Gorbet,et al.  Closed-Loop Position Control of Preisach Hystereses , 2003 .

[30]  J.A. De Abreu-Garcia,et al.  Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model , 2005, IEEE/ASME Transactions on Mechatronics.

[31]  Diana Bohm,et al.  L2 Gain And Passivity Techniques In Nonlinear Control , 2016 .

[32]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[33]  Reinder Banning,et al.  Modeling piezoelectric actuators , 2000 .

[34]  Xiaobo Tan,et al.  Approximate inversion of the Preisach hysteresis operator with application to control of smart actuators , 2005, IEEE Transactions on Automatic Control.

[35]  Ciro Visone,et al.  Hysteresis modelling and compensation for smart sensors and actuators , 2008 .

[36]  Y. Wen Method for Random Vibration of Hysteretic Systems , 1976 .

[37]  R. Nussbaum Some remarks on a conjecture in parameter adaptive control , 1983 .