Recent progress and current issues in SiC semiconductor devices for power applications

A review of current issues in SiC device processing technology is followed by a critical assessment of the current state-of-the-art and future potential for SiC power devices. Material quality, ion implantation, the SiC-SiO/sub 2/ interface and the thermal stability of contacting systems are all identified as requiring further work before the full range of devices and applications can be addressed, The evaluation of current device technology reveals that SiC Schottky and PIN diodes are already capable of increased power densities and substantially improved dynamic performance compared to their Si counterparts. Although direct replacement of Si devices is not yet economically viable, improvements in system performance and reductions in total system cost may be realised in the short term. Widespread use will, however, require continued improvements in wafer quality while costs must fall by a factor of ten. Finally, the development of new and improved packaging techniques, capable of handling increased die temperature and high thermal cycling stresses, will be needed to fully exploit the potential of SiC.

[1]  Krishna Shenai,et al.  Optimum semiconductors for high-power electronics , 1989 .

[2]  M. V. Rao,et al.  Al and B ion‐implantations in 6H‐ and 3C‐SiC , 1995 .

[3]  R. Johnson,et al.  Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review , 1996 .

[4]  John W. Palmour,et al.  Improved oxidation procedures for reduced SiO2/SiC defects , 1996 .

[5]  S. Mohney,et al.  Titanium and aluminum-titanium ohmic contacts to p-type SiC , 1997 .

[6]  John R. Williams,et al.  The Physics of Ohmic Contacts to SiC , 1997 .

[7]  A. Agarwal,et al.  Temperature dependence of Fowler-Nordheim current in 6H- and 4H-SiC MOS capacitors , 1997, IEEE Electron Device Letters.

[8]  J. J. A. Cooper,et al.  Advances in SiC MOS Technology , 1997 .

[9]  Michael Bassler,et al.  “Carbon cluster model” for electronic states at interfaces , 1997 .

[10]  S. Seshadri,et al.  700-V asymmetrical 4H-SiC gate turn-off thyristors (GTO's) , 1997, IEEE Electron Device Letters.

[11]  J. Palmour,et al.  Silicon carbide MESFETs for high-power S-band applications , 1997, 1997 IEEE MTT-S International Microwave Symposium Digest.

[12]  S. Sriram,et al.  SiC for Microwave Power Transistors , 1997 .

[13]  Bantval J. Baliga,et al.  SiC device edge termination using finite area argon implantation , 1997 .

[14]  T. Ouisse,et al.  Electron Transport at the SiC/SiO2 Interface , 1997 .

[15]  T. Kimoto,et al.  Nitrogen Ion Implantation into α‐SiC Epitaxial Layers , 1997 .

[16]  B. J. Baliga,et al.  High Voltage Planar 6H-SiC ACCUFET , 1997 .

[17]  Qamar Ul Wahab,et al.  Study of avalanche breakdown and impact ionization in 4H silicon carbide , 1998 .

[18]  M. Melloch,et al.  Design considerations and experimental analysis of high-voltage SiC Schottky barrier rectifiers , 1998 .

[19]  R. C. Clarke,et al.  Recent progress in 4H-SiC static induction transistors for high frequency power generation , 1998, 56th Annual Device Research Conference Digest (Cat. No.98TH8373).

[20]  Griff L. Bilbro,et al.  DC I-V characteristics and RF performance of a 4H-SiC JFET at 773 K , 1998 .

[21]  Jonathan A. Cooper,et al.  2.6 kV 4H-SiC lateral DMOSFETs , 1998, IEEE Electron Device Letters.

[22]  Performance comparison of wide bandgap semiconductor rf power devices , 1998 .

[23]  Tsunenobu Kimoto,et al.  A 3 kV Schottky barrier diode in 4H-SiC , 1998 .

[24]  J. W. Palmour,et al.  Insulator investigation on SiC for improved reliability , 1999 .

[25]  M. Uren,et al.  Quality and reliability of wet and dry oxides on n-type 4H-SiC , 1999 .

[26]  M. Schulz,et al.  Degradation of 6H-SiC MOS capacitors operated at high temperatures , 1999 .

[27]  J. Cooper,et al.  Time-dependent-dielectric-breakdown measurements of thermal oxides on n-type 6H-SiC , 1999 .

[28]  Peter Friedrichs,et al.  An 1800 V triple implanted vertical 6H-SiC MOSFET , 1999 .

[29]  Peter Friedrichs,et al.  Detailed investigation of n-channel enhancement 6H-SiC MOSFETs , 1999 .

[30]  M. Lades,et al.  Dynamics of incomplete ionized dopants and their impact on 4H/6H-SiC devices , 1999 .

[31]  W. Skorupa,et al.  Efficient p-type doping of 6H-SiC: Flash-lamp annealing after aluminum implantation , 1999 .

[32]  J. Palmour,et al.  Steady-state and transient forward current-voltage characteristics of 4H-silicon carbide 5.5 kV diodes at high and superhigh current densities , 1999 .

[33]  R. A. Sadler,et al.  Recent Progress in SiC Microwave MESFETs , 1999 .

[34]  J. Browne SIC MESFET DELIVERS 10-W POWER AT 2 GHZ , 1999 .

[35]  A. O'Neill,et al.  Low temperature annealing of 4H–SiC Schottky diode edge terminations formed by 30 keV Ar+ implantation , 2000 .

[36]  P. Friedrichs,et al.  Static and Dynamic Characteristics of 4H-SiC JFETs Designed for Different Blocking Categories , 2000 .

[37]  Yasunori Tanaka,et al.  Electrical and Structural Properties of Al and B Implanted 4H-SiC , 2000 .

[38]  Michael J. Uren,et al.  Surface Induced Instabilities in 4H-SiC Microwave MESFETs , 2000 .

[39]  Yoshitaka Sugawara,et al.  6.2KV 4H-SiC pin Diode with Low Forward Voltage Drop , 2000 .

[40]  A. Agarwal,et al.  2600 V, 12 A, 4H-SiC, Asymmetrical Gate Turn Off (GTO) Thyristor Development , 2000 .

[41]  Anton Mauder,et al.  Performance and Reliability Issues of SiC-Schottky Diodes , 2000 .

[42]  I. Kassamakov,et al.  Al/Si Ohmic Contacts to p-Type 4H-SiC for Power Devices , 2000 .

[43]  R. Held,et al.  SiC-Power Rectifiers , 2000 .

[44]  S. Ryu,et al.  High Temperature, High Current, 4H-SiC Accu-DMOSFET , 2000 .

[45]  H. Lendenmann,et al.  Operation of a 2500V 150A Si-IGBT / SiC Diode Module , 2000 .

[46]  R. Singh,et al.  1800 V NPN bipolar junction transistors in 4H-SiC , 2001, IEEE Electron Device Letters.