Coupling of fully Eulerian and arbitrary Lagrangian–Eulerian methods for fluid-structure interaction computations

We present a specific application of the fluid-solid interface-tracking/interface-capturing technique (FSITICT) for solving fluid-structure interaction. Specifically, in the FSITICT, we choose as interface-tracking technique the arbitrary Lagrangian–Eulerian method and as interface-capturing technique the fully Eulerian approach, leading to the Eulerian-arbitrary Lagrangian–Eulerian (EALE) technique. Using this approach, the domain is partitioned into two sub-domains in which the different methods are used for the numerical solution. The discretization is based on a monolithic solver in which finite differences are used for temporal integration and a Galerkin finite element method for spatial discretization. The nonlinear problem is treated with Newton’s method. The method combines advantages of both sub-frameworks, which is demonstrated with the help of some benchmarks.

[1]  S. Giuliani,et al.  Lagrangian and Eulerian Finite Element Techniques for Transient Fluid-Structure Interaction Problems , 1977 .

[2]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[3]  Graham F. Carey,et al.  Penalty finite element method for the Navier-Stokes equations , 1984 .

[4]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[5]  Philippe G. Ciarlet,et al.  Recent Progress in the Two-Dimensional Approximation of Three - Dimensional Plate Models in Nonlinear Elasticity , 1987 .

[6]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[7]  Timothy A. Davis,et al.  An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .

[8]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[9]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[10]  S. Mittal,et al.  Computation of unsteady incompressible flows with the stabilized finite element methods: Space-time formulations, iterative strategies and massively parallel implementations , 1992 .

[11]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[12]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[13]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[14]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[15]  Rekha Ranjana Rao,et al.  A Newton-Raphson Pseudo-Solid Domain Mapping Technique for Free and Moving Boundary Problems , 1996 .

[16]  Rolf Rannacher,et al.  ARTIFICIAL BOUNDARIES AND FLUX AND PRESSURE CONDITIONS FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS , 1996 .

[17]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[18]  Marek Behr,et al.  Enhanced-Discretization Interface-Capturing Technique (EDICT) for computation of unsteady flows with interfaces , 1998 .

[19]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[20]  Tayfun E. Tezduyar,et al.  EDICT for 3D computation of two-fluid interfaces , 2000 .

[21]  Noel J. Walkington,et al.  Digital Object Identifier (DOI) 10.1007/s002050100158 An Eulerian Description of Fluids Containing Visco-Elastic Particles , 2022 .

[22]  F. Baaijens A fictitious domain/mortar element method for fluid-structure interaction , 2001 .

[23]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .

[24]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[25]  Ted Belytschko,et al.  Structured extended finite element methods for solids defined by implicit surfaces , 2002 .

[26]  C. Peskin Acta Numerica 2002: The immersed boundary method , 2002 .

[27]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[28]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[29]  J. Sethian,et al.  LEVEL SET METHODS FOR FLUID INTERFACES , 2003 .

[30]  D. Dinkler,et al.  A monolithic approach to fluid–structure interaction using space–time finite elements , 2004 .

[31]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[32]  Miguel Angel Fernández,et al.  A Newton method using exact jacobians for solving fluid-structure coupling , 2005 .

[33]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[34]  Hans-Joachim Bungartz,et al.  Fluid-Structure Interaction , 2006 .

[35]  S. Turek,et al.  Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow , 2006 .

[36]  Tayfun E. Tezduyar,et al.  Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations , 2006 .

[37]  Stefan Turek,et al.  A Monolithic FEM/Multigrid Solver for an ALE Formulation of Fluid-Structure Interaction with Applications in Biomechanics , 2006 .

[38]  Patrick D. Anderson,et al.  A fluid-structure interaction method with solid-rigid contact for heart valve dynamics , 2006, J. Comput. Phys..

[39]  Tayfun E. Tezduyar,et al.  Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces , 2006 .

[40]  Thomas Dunne,et al.  An Eulerian approach to fluid–structure interaction and goal‐oriented mesh adaptation , 2006 .

[41]  Tayfun E. Tezduyar,et al.  A Numerical model based on the mixed interface‐tracking/interface‐capturing technique (MITICT) for flows with fluid–solid and fluid–fluid interfaces , 2007 .

[42]  Jaroslav Hron,et al.  Fluid-structure interaction with applications in biomechanics , 2007, Nonlinear Analysis: Real World Applications.

[43]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[44]  Tayfun E. Tezduyar,et al.  Computation of flow problems with the Mixed Interface-Tracking/Interface-Capturing Technique (MITICT) , 2007 .

[45]  Hong Zhao,et al.  A fixed-mesh method for incompressible flow-structure systems with finite solid deformations , 2008, J. Comput. Phys..

[46]  Jean-Frédéric Gerbeau,et al.  A partitioned fluid-structure algorithm for elastic thin valves with contact , 2008 .

[47]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[48]  G. Cottet,et al.  EULERIAN FORMULATION AND LEVEL SET MODELS FOR INCOMPRESSIBLE FLUID-STRUCTURE INTERACTION , 2008 .

[49]  Matteo Astorino,et al.  Fluid-structure interaction and multi-body contact. Application to aortic valves , 2009 .

[50]  Alfio Quarteroni,et al.  Cardiovascular mathematics : modeling and simulation of the circulatory system , 2009 .

[51]  Héctor D. Ceniceros,et al.  Efficient solutions to robust, semi-implicit discretizations of the immersed boundary method , 2009, J. Comput. Phys..

[52]  T. Wick,et al.  Finite elements for fluid–structure interaction in ALE and fully Eulerian coordinates , 2010 .

[53]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of complex fluid–structure interactions , 2010 .

[54]  T. Wick Fluid-structure interactions using different mesh motion techniques , 2011 .

[55]  Tayfun E. Tezduyar,et al.  Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters , 2011 .

[56]  Yoichiro Matsumoto,et al.  A full Eulerian finite difference approach for solving fluid-structure coupling problems , 2010, J. Comput. Phys..

[57]  Thomas Wick,et al.  Adaptive Finite Element Simulation of Fluid-Structure Interaction with Application to Heart-Valve Dynamics , 2011 .

[58]  Ping He,et al.  A full-Eulerian solid level set method for simulation of fluid–structure interactions , 2011 .

[59]  Thomas Wick,et al.  Solving Monolithic Fluid-Structure Interaction Problems in Arbitrary Lagrangian Eulerian Coordinates with the deal.II Library , 2011 .

[60]  Yoichiro Matsumoto,et al.  A Review of Full Eulerian Methods for Fluid Structure Interaction Problems , 2012 .

[61]  Thomas Richter,et al.  A Fully Eulerian formulation for fluid-structure-interaction problems , 2013, J. Comput. Phys..

[62]  T. Wick Stability Estimates and Numerical Comparison of Second Order Time-Stepping Schemes for Fluid-Structure Interactions , 2013 .

[63]  Thomas Wick,et al.  Fully Eulerian fluid-structure interaction for time-dependent problems , 2013 .