Degrees of rigidity for Souslin trees

We investigate various strong notions of rigidity for Souslin trees, separating them under Diamond into a hierarchy. Applying our methods to the automorphism tower problem in group theory, we show under Diamond that there is a group whose automorphism tower is highly malleable by forcing.

[1]  Saharon Shelah,et al.  Isomorphism types of Aronszajn trees , 1985 .

[2]  ScienceDirect Annals of mathematical logic , 1969, Journal of Symbolic Logic.

[3]  Haim Gaifman,et al.  Isomorphism Types of Trees , 1964 .

[4]  T. Jech Forcing with trees and ordinal definability , 1975 .

[5]  H. Wielandt Eine Verallgemeinerung der invarianten Untergruppen , 1939 .

[6]  B. M. Fulk MATH , 1992 .

[7]  Joel David Hamkins,et al.  Changing the Heights of Automorphism Towers , 2000, Ann. Pure Appl. Log..

[8]  Jstor,et al.  Proceedings of the American Mathematical Society , 1950 .

[9]  Keith Devlin,et al.  The Souslin problem , 1974 .

[10]  J. Hulse,et al.  Automorphism towers of polycyclic groups , 1970 .

[11]  Georges Kurepa,et al.  Ensembles ordonnées et ramifiés , 1935 .

[12]  J. E. Roseblade,et al.  Automorphism towers of extremal groups , 1970 .

[13]  The automorphism tower problem II , 1985 .

[14]  Thomas Jech Automorphisms of ₁-trees , 1972 .

[15]  Thomas Jech,et al.  Automorphisms of ω 1 -Trees , 1972 .

[16]  S. Tennenbaum,et al.  Souslin'S problem. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Uri Avraham Construction of a rigid Aronszajn tree , 1979 .

[18]  Tomáš Jech,et al.  Non-provability of Souslin's hypothesis , 1967 .

[19]  P. Dangerfield Logic , 1996, Aristotle and the Stoics.