Aeroelastic Shape Optimization of a Flapping Wing

This paper presents the theory and results for the shape and structural optimization of a platelike flapping wing. The aeroelastic system is analyzed by coupling an unsteady vortex lattice aerodynamics model with a plate finite element model. The assumptions in the aerodynamic model allow the system of equations to be calculated with the inversion of a single matrix, greatly reducing the computational cost. The design variables are the shape parameters from the modified Zimmerman method and the polynomial coefficients that describe the wing thickness. The wing shape and structure are optimized using two multiobjective optimization formulations. The first optimization minimizes the input power while maximizing the cycle-averaged thrust. The input power is the secondary objective function and is treated as a nonlinear constraint, whereas the cycle-averaged thrust is the primary objective function. A second multiobjective formulation that treats wing mass as the secondary objective function is also performed...

[1]  Per-Olof Persson,et al.  High Fidelity Simulations of Flapping Wings Designed for Energetically Optimal Flight , 2011 .

[2]  Bret Stanford,et al.  Analytical Sensitivity Analysis of an Unsteady Vortex Lattice Method for Flapping Wing Optimization , 2009 .

[3]  Bret Stanford,et al.  Kinematic Optimization of Insect Flight for Minimum Mechanical Power , 2010 .

[4]  Lucien Duckstein Multiobjective Optimization in Structural Design: The Model Choice Problem , 1981 .

[5]  Bret Stanford,et al.  Shape, Structure, and Kinematic Parameterization of a Power-Optimal Hovering Wing , 2010 .

[6]  Sam Heathcote,et al.  Effect of Spanwise Flexibility on Flapping Wing Propulsion , 2006 .

[7]  Kevin Knowles,et al.  Insectlike Flapping Wings in the Hover Part II: Effect of Wing Geometry , 2008 .

[8]  L. Meirovitch,et al.  Fundamentals of Vibrations , 2000 .

[9]  J. Katz,et al.  Low-Speed Aerodynamics , 1991 .

[10]  Bret Stanford,et al.  Simultaneous Topology Optimization of Membrane Wings and Their Compliant Flapping Mechanisms , 2012 .

[11]  Jean-Louis Batoz,et al.  An explicit formulation for an efficient triangular plate‐bending element , 1982 .

[12]  M. Dickinson,et al.  The control of flight force by a flapping wing: lift and drag production. , 2001, The Journal of experimental biology.

[13]  Mehdi Ghommem,et al.  Deterministic Global Optimization of Flapping Wing Motion for Micro Air Vehicles , 2010 .

[14]  Wei Shyy,et al.  Computational aeroelasticity framework for analyzing flapping wing micro air vehicles , 2008 .

[15]  Mayuresh J. Patil,et al.  Parametric Representation and Shape Optimization of Flapping Micro Air Vehicle Wings , 2012 .

[16]  Kevin Y. Ma,et al.  Controlled Flight of a Biologically Inspired, Insect-Scale Robot , 2013, Science.

[17]  B. Remes,et al.  Design, Aerodynamics, and Vision-Based Control of the DelFly , 2009 .

[18]  N. Yamaleev,et al.  Adjoint-based shape and kinematics optimization of flapping wing propulsive efficiency , 2013 .

[19]  J. D. DeLaurier,et al.  A study of mechanical flapping-wing flight , 1993, The Aeronautical Journal (1968).

[20]  J Colorado,et al.  Corrigendum: Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators , 2012, Bioinspiration & biomimetics.

[21]  S. Sane,et al.  Aerodynamic effects of flexibility in flapping wings , 2010, Journal of The Royal Society Interface.

[22]  Christopher A. Mattson,et al.  Experiment-Based Optimization of Flapping Wing Kinematics , 2009 .

[23]  Wright-Patterson Afb,et al.  Aeroelastic Optimization of Flapping Wing Venation: A Cellular Division Approach , 2012 .

[24]  C H Zimmerman Aerodynamic Characteristics of Several Airfoils of Low Aspect Ratio , 1935 .

[25]  Sergey V Shkarayev,et al.  Aerodynamics of flapping-wing micro air vehicles , 2009 .

[26]  Peter Ifju,et al.  Multi-Objective Topology Optimization of Wing Skeletons for Aeroelastic Membrane Structures , 2008 .

[27]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[28]  Peretz P. Friedmann,et al.  Approximate Aerodynamic and Aeroelastic Modeling of Flapping Wings in Hover and Forward Flight , 2011 .

[29]  Muhammad R. Hajj,et al.  Design Optimization of Flapping Ornithopters: The Pterosaur Replica in Forward Flight , 2016 .

[30]  Joseph Katz,et al.  Unsteady aerodynamic model of flapping wings , 1996 .

[31]  Paul B. MacCready,et al.  Development of a Wing-Flapping Flying Replica of the Largest Pterosaur , 1985 .

[32]  Mustafa Turan,et al.  Tools for the Conceptual Design and Engineering Analysis of Micro Air Vehicles , 2012 .

[33]  Cheng-Kuei Hsu,et al.  Development of Flapping Wing Micro Air Vehicles -Design, CFD, Experiment and Actual Flight , 2010 .

[34]  Z. J. Wang,et al.  Falling paper: Navier-Stokes solutions, model of fluid forces, and center of mass elevation. , 2004, Physical review letters.

[35]  Bret Stanford,et al.  Formulation of Analytical Design Derivatives for Nonlinear Unsteady Aeroelasticity , 2010 .

[36]  Mehdi Ghommem,et al.  Modeling and Analysis for Optimization of Unsteady Aeroelastic Systems , 2011 .

[37]  Gordon J. Berman,et al.  Energy-minimizing kinematics in hovering insect flight , 2007, Journal of Fluid Mechanics.

[38]  Ali H. Nayfeh,et al.  Optimization of Wing Kinematics for Hovering MAVs Using Calculus of Variation , 2012 .

[39]  Koji Isogai,et al.  Optimum Aeroelastic Design of a Flapping Wing , 2007 .

[40]  Klaus-Jürgen Bathe,et al.  A study of three‐node triangular plate bending elements , 1980 .

[41]  David G. Carmichael,et al.  Computation of pareto optima in structural design , 1980 .

[42]  R. Zbikowski,et al.  Insectlike Flapping Wings in the Hover Part I: Effect of Wing Kinematics , 2008 .

[43]  Henry Won,et al.  Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle , 2012 .

[44]  Robert J. Wood,et al.  The First Takeoff of a Biologically Inspired At-Scale Robotic Insect , 2008, IEEE Transactions on Robotics.

[45]  Mehdi Ghommem,et al.  Global and Local Optimization of Flapping Kinematics , 2012 .

[46]  Peter Ifju,et al.  Deterministic Design Optimization of a Bendable Load Stiffened UAV Wing , 2010 .