A family of three-term nonlinear conjugate gradient methods close to the memoryless BFGS method
暂无分享,去创建一个
[1] Jorge J. Moré,et al. Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .
[2] Reza Ghanbari,et al. A descent family of Dai–Liao conjugate gradient methods , 2014, Optim. Methods Softw..
[3] Boris Polyak. The conjugate gradient method in extremal problems , 1969 .
[4] William W. Hager,et al. A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..
[5] Jichun Li,et al. Global pointwise error estimates for uniformly convergent finite element methods for the elliptic boundary layer problem , 1998 .
[6] Ya-Xiang Yuan,et al. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..
[7] Yu-Hong Dai,et al. A Nonlinear Conjugate Gradient Algorithm with an Optimal Property and an Improved Wolfe Line Search , 2013, SIAM J. Optim..
[8] Jorge Nocedal,et al. Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..
[9] T. M. Williams,et al. Practical Methods of Optimization. Vol. 1: Unconstrained Optimization , 1980 .
[10] Li Zhang. New versions of the Hestenes-Stiefel nonlinear conjugate gradient method based on the secant condition for optimization , 2009 .
[11] David F. Shanno,et al. Conjugate Gradient Methods with Inexact Searches , 1978, Math. Oper. Res..
[12] Weijun Zhou,et al. A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence , 2006 .
[13] Guoyin Li,et al. New conjugacy condition and related new conjugate gradient methods for unconstrained optimization , 2007 .
[14] C. Storey,et al. Efficient generalized conjugate gradient algorithms, part 1: Theory , 1991 .
[15] Gonglin Yuan,et al. Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems , 2009, Optim. Lett..
[16] J. Nocedal. Updating Quasi-Newton Matrices With Limited Storage , 1980 .
[17] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[18] A. Perry. A Class of Conjugate Gradient Algorithms with a Two-Step Variable Metric Memory , 1977 .
[19] Heying Feng,et al. The global convergence of a descent PRP conjugate gradient method , 2012 .
[20] Hiroshi Yabe,et al. Global Convergence Properties of Nonlinear Conjugate Gradient Methods with Modified Secant Condition , 2004, Comput. Optim. Appl..
[21] D. Shanno. On the Convergence of a New Conjugate Gradient Algorithm , 1978 .
[22] Jian Zhang,et al. A variant smoothing Newton method for P0-NCP based on a new smoothing function , 2009 .
[23] Min Li,et al. A sufficient descent LS conjugate gradient method for unconstrained optimization problems , 2011, Appl. Math. Comput..
[24] Hassan A. Zedan. New approach for tanh and extended-tanh methods with applications on Hirota-Satsuma equations , 2009 .
[25] M. Powell. Nonconvex minimization calculations and the conjugate gradient method , 1984 .
[26] C. M. Reeves,et al. Function minimization by conjugate gradients , 1964, Comput. J..
[27] Neculai Andrei,et al. Open Problems in Nonlinear Conjugate Gradient Algorithms for Unconstrained Optimization , 2011 .
[28] M. Powell. Convergence properties of algorithms for nonlinear optimization , 1986 .
[29] L. Liao,et al. New Conjugacy Conditions and Related Nonlinear Conjugate Gradient Methods , 2001 .
[30] Nicholas I. M. Gould,et al. CUTE: constrained and unconstrained testing environment , 1995, TOMS.
[31] L Guan. Modified PRP Methods with Sufficient Descent Property and Their Convergence Properties , 2006 .
[32] Jorge Nocedal,et al. On the limited memory BFGS method for large scale optimization , 1989, Math. Program..
[33] E. Polak,et al. Note sur la convergence de méthodes de directions conjuguées , 1969 .
[34] Jingfeng Zhang,et al. New Quasi-Newton Equation and Related Methods for Unconstrained Optimization , 1999 .
[35] Zhi-feng Dai,et al. Two modified HS type conjugate gradient methods for unconstrained optimization problems , 2011 .
[36] W. Hager,et al. A SURVEY OF NONLINEAR CONJUGATE GRADIENT METHODS , 2005 .