Mathematical methods of non-Archimedean physics

CONTENTS Introduction § 1. Generalized functions and Gaussian integrals on finite-dimensional non-Archimedean spaces § 2. Non-Archimedean Hilbert spaces § 3. Spaces of functions square-integrable with respect to Gauss and Lebesgue distributions on non-Archimedean spaces § 4. The Schrodinger and Bargmann-Fock representations in non-Archimedean quantum mechanics § 5. Non-Archimedean statistical quantum mechanics § 6. Existence and uniqueness theorems for the solution of linear partial differential equations on non-Archimedean spaces § 7. The solubility of Schrodinger's, Heisenberg's and Liouville's equations in non-Archimedean mechanics § 8. Trotter's formula in non-Archimedean commutative Banach algebras, and the chronological representation of the solution of Schrodinger's equation with a potential § 9. Generalized functions and Gaussian integrals on infinite-dimensional non-Archimedean spaces § 10. Existence and uniqueness theorems for the solution of linear partial differential equations on infinite-dimensional non-Archimedean spaces § 11. The path integral for a non-Archimedean scalar bosonic field § 12. Non-Archimedean bosonic strings in a photonic-like gauge § 13. Non-Archimedean bosonic string fields in a photonic-like gauge § 14. Singular functions of a non-Archimedean scalar bosonic field References

[1]  Edward Witten,et al.  ADELIC STRING AMPLITUDES , 1987 .

[2]  Michael B. Green,et al.  Superstring Field Theory , 1984 .

[3]  Quantum mechanics over non-Archimedean number fields , 1990 .

[4]  K. Kikkawa Field theory of relativistic strings , 1975 .

[5]  F. Bruhat Distributions sur un groupe localement compact et applications à l’étude des représentations des groupes $p$-adiques , 1961 .

[6]  V. S. Vladimirov,et al.  P-adic Schrödinger-type equation , 1989 .

[7]  R. Newton,et al.  ANALYTIC METHODS IN MATHEMATICAL PHYSICS , 1970 .

[8]  J. Gervais,et al.  Infinite component field theory of interacting relativistic strings and dual theory , 1975 .

[9]  V. Vladimirov Generalized functions in mathematical physics , 1979 .

[10]  F. Berezin,et al.  Method of Second Quantization , 1966 .

[11]  W. H. Schikhof Non-Archimedean harmonic analysis , 1967 .

[12]  Igor Volovich,et al.  p-adic quantum mechanics , 1989 .

[13]  N. N. Bogoliubov,et al.  Introduction to the theory of quantized fields , 1960 .

[14]  I. Volovich On super-self-duality equations , 1983 .

[15]  I. V. Volovich,et al.  SUPERANALYSIS. I. DIFFERENTIAL CALCULUS , 1984 .

[16]  N. Bogolubov,et al.  Introduction to quantum statistical mechanics , 1982 .

[17]  A. Rogers A Global Theory of Supermanifolds , 1980 .

[18]  J. Goldstone,et al.  Quantum dynamics of a massless relativistic string , 1973 .

[19]  Igor Volovich Harmonic analysis and p-adic strings , 1988 .

[20]  M. Kaku,et al.  Field theory of relativistic strings. I. Trees , 1974 .

[21]  K. Hirsch,et al.  Representation theory and automorphic functions , 1969 .

[22]  I. Volovich Supersymmetric chiral field with anomaly and its integrability , 1985 .

[23]  A. Rogers Super Lie groups: global topology and local structure , 1981 .

[24]  Y. Manin NON-ARCHIMEDEAN INTEGRATION AND JACQUET-LANGLANDS p-ADIC L-FUNCTIONS , 1976 .

[25]  A. Rogers Consistent superspace integration , 1985 .

[26]  A. Yu. Khrennikov Feynman integral in the phase space and symbols of infinite-dimensional pseudodifferential operators , 1985 .

[27]  I. Volovich Supersymmetric Yang-Mills theory as a holomorphic vector bundle over twistors and super-self-duality , 1983 .

[28]  B. Grossman p-Adic strings, the Weil conjectures and anomalies☆ , 1987 .

[29]  A. Khrennikov EQUATIONS ON A SUPERSPACE , 1991 .

[30]  A. F. Monna,et al.  Intégration non-archimédienne II , 1963 .

[31]  V. S. Vladimirov Generalized functions over the field of p-adic numbers , 1988 .

[32]  I. Volovich,et al.  p-adic superstrings , 1988 .

[33]  E. Zelenov p-Adic quantum mechanics for p=2 , 1989 .

[34]  P. Freund,et al.  Non-archimedean strings , 1987 .

[35]  Okada,et al.  p-adic string N-point function. , 1988, Physical Review Letters.

[36]  Igor Volovich,et al.  On the p-adic summability of the anharmonic oscillator , 1988 .

[37]  Chris F. Woodcock,et al.  Convolutions on the ring of p-adic integers , 1979 .

[38]  C. Woodcock Fourier Analysis for P-ADIC LIPSCHITZ FUNCTIONS , 1974 .

[39]  J. Gervais p-adic analyticity and virasoro algebras for conformal theories in more than two dimensions , 1988 .

[40]  V. Y. Khrennikov Feynman measures on locally convex spaces , 1988 .

[41]  Alain Escassut $T$-filtres, ensembles analytiques et transformation de Fourier $P$-adique , 1975 .

[42]  A. Khrennikov Quantization of bosonic string field and infinite-dimensional pseudodifferential operators. Fixed gauge , 1989 .

[43]  Open and closed p-adic strings and quadratic extensions of number fields , 1988 .

[44]  I. V. Volovich,et al.  Superanalysis. II. Integral calculus , 1984 .

[45]  E. J. Beltrami,et al.  Methods of the theory of functions of several complex variables: by V. S. Vladimirov. (Russian trans. by Scripta Technica, Inc.) 353 pages, diagrams, 6 × 9 in. Cambridge, Mass., M.I.T. Press, 1966. Price, $12.00 , 1967 .

[46]  J. Martin The Feynman principle for a Fermi system , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[47]  Igor Volovich,et al.  p-adic string , 1987 .

[48]  I. V. Volovich,et al.  p-adic space-time and string theory , 1987 .