Three-dimensional reconstruction of a composite cathode for lithium-ion cells

[1]  J. Schmidt,et al.  Studies on LiFePO4 as cathode material using impedance spectroscopy , 2011 .

[2]  Stephen J. Harris,et al.  Measurement of three-dimensional microstructure in a LiCoO2 positive electrode , 2011 .

[3]  E. Ivers-Tiffée,et al.  Electrode Reconstruction by FIB/SEM and Microstructure Modeling , 2010 .

[4]  Nigel P. Brandon,et al.  Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery , 2010 .

[5]  E. Ivers-Tiffée,et al.  3D Electrode Microstructure Reconstruction and Modelling , 2009 .

[6]  D. Stephenson,et al.  Imaging and Modeling for Engineering the Li-ion Battery Electrode , 2009 .

[7]  B Notarberardino,et al.  An efficient approach to converting three-dimensional image data into highly accurate computational models , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Zhangxin Chen,et al.  Critical review of the impact of tortuosity on diffusion , 2007 .

[9]  Karim Zaghib,et al.  Electronic, Optical, and Magnetic Properties of LiFePO 4 : Small Magnetic Polaron Effects , 2007 .

[10]  Jon M. Hiller,et al.  Three-dimensional reconstruction of a solid-oxide fuel-cell anode , 2006, Nature materials.

[11]  Y. Ukyo,et al.  Performance of LiNiCoO2 materials for advanced lithium-ion batteries , 2005 .

[12]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[13]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[14]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .