NONPARAMETRIC TEXTURE ANALYSIS WITH SIMPLE SPATIAL

Recently, we have developed a nonparametric approach to texture analysis based on simple spatial operators like local binary patterns and signed gray level differences. Very good performance has been obtained in various texture classification and segmentation problems. This paper overviews our approach and presents examples to demonstrate its efficiency. Our results suggest that complementary features based on distributions of local spatial patterns and contrast play very important roles in texture discrimintation.

[1]  Matti Pietikäinen,et al.  Determining Composition of Grain Mixtures by Texture Classification Based on Feature Distributions , 1996, Int. J. Pattern Recognit. Artif. Intell..

[2]  Dong-Chen He,et al.  Texture Unit, Texture Spectrum And Texture Analysis , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[3]  Emanuele Trucco,et al.  Computer and Robot Vision , 1995 .

[4]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[5]  Matti Pietikäinen,et al.  Rotation-invariant texture classification using feature distributions , 2000, Pattern Recognit..

[6]  T. Ojala,et al.  Gray level cooccurrence histograms via learning vector quantization , 1999 .

[7]  T. Kohonen,et al.  Appendix 2.4 Stopping Rule 2.3 Fine Tuning Using the Basic Lvq1 or Lvq2.1 Lvq Pak: a Program Package for the Correct Application of Learning Vector Quantization Algorithms , 1992 .

[8]  Erkki Oja,et al.  Reduced Multidimensional Co-Occurrence Histograms in Texture Classification , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[10]  Matti Pietikäinen,et al.  Unsupervised texture segmentation using feature distributions , 1997, Pattern Recognit..

[11]  Glenn Healey,et al.  Markov Random Field Models for Unsupervised Segmentation of Textured Color Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Erkki Oja,et al.  Texture discrimination with multidimensional distributions of signed gray-level differences , 2001, Pattern Recognit..

[13]  A. Rosenfeld,et al.  A Theory of Textural Segmentation , 1983 .

[14]  Anil K. Jain,et al.  Learning Texture Discrimination Masks , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Ian Burns,et al.  Measuring texture classification algorithms , 1997, Pattern Recognit. Lett..

[16]  Matti Pietikäinen,et al.  Texture classification by center-symmetric auto-correlation, using Kullback discrimination of distributions , 1995, Pattern Recognit. Lett..

[17]  Matti Pietikäinen,et al.  APPROACHES TO TEXTURE-BASED CLASSIFICATION, SEGMENTATION AND SURFACE INSPECTION , 1999 .

[18]  Luc Van Gool,et al.  Texture analysis Anno 1983 , 1985, Comput. Vis. Graph. Image Process..

[19]  Matti Pietikäinen,et al.  Nonparametric multichannel texture description with simple spatial operators , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).