A 13-mW 64-dB SNDR 280-MS/s Pipelined ADC Using Linearized Integrating Amplifiers

A 12-bit pipelined analog-to-digital converter (ADC) using a new integration-based open-loop residue amplifier topology is presented. The amplifier distortion is cancelled with the help of an analog linearization technique based on a tunable input-driven active degeneration. Amplifier gain and nonlinearity errors are detected in background using split-ADC calibration technique. The mismatch between the two half-ADCs is minimized by sharing the residue amplifier between the two half-ADCs and adding the calibration offset over time. Based on this “split-over-time” calibration architecture, a two-lane prototype ADC was fabricated in 28-nm CMOS that achieves 64-dB signal-to-noise + distortion ratio and 77dB spurious-free dynamic range at Nyquist input after calibration. Operating at 280 MS/s, the ADC consumes 13 mW from 1-V supply, exhibiting a Schreier figure-of-merit of 164.3 dB. By dissipating only 0.4 mW in the residue amplifiers, the linearization technique helps the ADC achieve an improvement of at least 3 dB in Schreier FoM over existing state-of-the-art ADCs with comparable architectures.

[1]  Wenbo Liu,et al.  A 12-bit, 45-MS/s, 3-mW Redundant Successive-Approximation-Register Analog-to-Digital Converter With Digital Calibration , 2011, IEEE Journal of Solid-State Circuits.

[2]  Frank M. L. van der Goes,et al.  A 12 b 53 mW 195 MS/s Pipeline ADC with 82 dB SFDR Using Split-ADC Calibration , 2015, IEEE Journal of Solid-State Circuits.

[3]  D.A. Johns,et al.  An 11-Bit 45 MS/s Pipelined ADC With Rapid Calibration of DAC Errors in a Multibit Pipeline Stage , 2007, IEEE Journal of Solid-State Circuits.

[4]  Soon-Kyun Shin,et al.  A 12 bit 200 MS/s Zero-Crossing-Based Pipelined ADC With Early Sub-ADC Decision and Output Residue Background Calibration , 2014, IEEE Journal of Solid-State Circuits.

[5]  Akira Matsuzawa,et al.  A 9-bit 500-MS/s 6.0-mW dynamic pipelined ADC using time-domain linearized dynamic amplifiers , 2016, 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC).

[6]  Hae-Seung Lee,et al.  Comparator-based switched-capacitor circuits for scaled CMOS technologies , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[7]  Michael P. Flynn,et al.  A 100 MS/s, 10.5 Bit, 2.46 mW Comparator-Less Pipeline ADC Using Self-Biased Ring Amplifiers , 2015, IEEE Journal of Solid-State Circuits.

[8]  Jan Craninckx,et al.  A 2.6 mW 6 bit 2.2 GS/s Fully Dynamic Pipeline ADC in 40 nm Digital CMOS , 2010, IEEE Journal of Solid-State Circuits.

[9]  Jan Craninckx,et al.  A 1.7 mW 11b 250 MS/s 2-Times Interleaved Fully Dynamic Pipelined SAR ADC in 40 nm Digital CMOS , 2012, IEEE Journal of Solid-State Circuits.

[10]  P. R. Gray,et al.  A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter , 1999, IEEE J. Solid State Circuits.

[11]  Jan Craninckx,et al.  A 70 dB SNDR 200 MS/s 2.3 mW dynamic pipelined SAR ADC in 28nm digital CMOS , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[12]  Kazuki Sobue,et al.  Ring amplifiers for switched-capacitor circuits , 2012, 2012 IEEE International Solid-State Circuits Conference.

[13]  Un-Ku Moon,et al.  A 75.9dB-SNDR 2.96mW 29fJ/conv-step ringamp-only pipelined ADC , 2013, 2013 Symposium on VLSI Circuits.

[14]  Boris Murmann,et al.  A 12-bit, 30-MS/s, 2.95-mW pipelined ADC using single-stage class-AB amplifiers and deterministic background calibration , 2010, 2010 Proceedings of ESSCIRC.

[15]  E. Iroaga,et al.  A 12-Bit 75-MS/s Pipelined ADC Using Incomplete Settling , 2007, IEEE Journal of Solid-State Circuits.

[16]  Han Yan,et al.  A 1.5 mW 68 dB SNDR 80 Ms/s 2 $\times$ Interleaved Pipelined SAR ADC in 28 nm CMOS , 2014, IEEE Journal of Solid-State Circuits.

[17]  Paul R. Gray,et al.  A power optimized 13-b 5 Msamples/s pipelined analog-to-digital converter in 1.2 /spl mu/m CMOS , 1996 .

[18]  Frank M. L. van der Goes,et al.  A 13mW 64dB SNDR 280MS/s pipelined ADC using linearized open-loop class-AB amplifiers , 2017, ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference.

[19]  Akira Matsuzawa,et al.  A 9-bit 1.8 GS/s 44 mW Pipelined ADC Using Linearized Open-Loop Amplifiers , 2016, IEEE Journal of Solid-State Circuits.

[20]  Un-Ku Moon,et al.  Background calibration techniques for multistage pipelined ADCs with digital redundancy , 2003, IEEE Trans. Circuits Syst. II Express Briefs.

[21]  Frank M. L. van der Goes,et al.  A 66 dB SNDR pipelined split-ADC using class-AB residue amplifier with analog gain correction , 2015, ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC).

[22]  Hae-Seung Lee,et al.  A Zero-Crossing-Based 8-bit 200 MS/s Pipelined ADC , 2007, IEEE Journal of Solid-State Circuits.

[23]  Boris Murmann,et al.  A 12-b, 30-MS/s, 2.95-mW Pipelined ADC Using Single-Stage Class-AB Amplifiers and Deterministic Background Calibration , 2012, IEEE Journal of Solid-State Circuits.

[24]  Youngcheol Chae,et al.  Low Voltage, Low Power, Inverter-Based Switched-Capacitor Delta-Sigma Modulator , 2009, IEEE J. Solid State Circuits.

[25]  Koichi Hamashita,et al.  A 14b 60 MS/s Pipelined ADC Adaptively Cancelling Opamp Gain and Nonlinearity , 2014, IEEE Journal of Solid-State Circuits.

[26]  Gunhee Han,et al.  Low Voltage, Low Power, Inverter-Based , 2009 .

[27]  Ian Galton,et al.  A 130 mW 100 MS/s Pipelined ADC With 69 dB SNDR Enabled by Digital Harmonic Distortion Correction , 2009, IEEE Journal of Solid-State Circuits.