Emergent electronic structure of CaFe 2 As 2

[1]  M. Aichhorn,et al.  Direct observation of dispersive lower Hubbard band in iron-based superconductor FeSe , 2016, 1612.02313.

[2]  T. Qian,et al.  Tetragonal and collapsed-tetragonal phases of CaFe 2 As 2 : A view from angle-resolved photoemission and dynamical mean-field theory , 2015, 1505.00753.

[3]  R. Valentí,et al.  Correlation effects in the tetragonal and collapsed-tetragonal phase of CaFe 2 As 2 , 2014, 1406.1314.

[4]  M. Long,et al.  Quenched Fe moment in the collapsed tetragonal phase of Ca 1 − x Pr x Fe 2 As 2 ∗ , 2013 .

[5]  M. Widom,et al.  First-principles study of CaFe 2 As 2 under pressure , 2013 .

[6]  K. Maiti,et al.  Electronic structure near the quantum critical point in V-doped Cr —A high-resolution photoemission study , 2012 .

[7]  G. Profeta,et al.  First-principles study of rare-earth-doped superconducting CaFe 2 As 2 , 2012 .

[8]  Maryland.,et al.  Suppression of magnetism and development of superconductivity within the collapsed tetragonal phase of Ca[subscript 0.67]Sr[subscript 0.33]Fe[subscript 2]As[subscript 2] under pressure , 2012 .

[9]  P. Zavalij,et al.  Structural collapse and superconductivity in rare-earth-doped CaFe2As2 , 2011, 1105.4798.

[10]  Yanyi Sun,et al.  Unusual superconducting state at 49 K in electron-doped CaFe2As2 at ambient pressure , 2011, Proceedings of the National Academy of Sciences.

[11]  G. Kotliar,et al.  Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. , 2011, Nature materials.

[12]  A. Georges,et al.  Theoretical evidence for strong correlations and incoherent metallic state in FeSe , 2010, 1003.1286.

[13]  A. Moewes,et al.  Contribution of Fe 3 d states to the Fermi level of CaFe 2 As 2 , 2009 .

[14]  P. Canfield,et al.  Complete pressure-dependent phase diagrams for SrFe 2 As 2 and BaFe 2 As 2 , 2009, 0904.4488.

[15]  A. Bostwick,et al.  Three- to two-dimensional transition of the electronic structure in CaFe2As2: a parent compound for an iron arsenic high-temperature superconductor. , 2009, Physical review letters.

[16]  E. Bauer,et al.  NMR investigation of superconductivity and Antiferromagnetism in CaFe2As2 under pressure. , 2009, Physical review letters.

[17]  T. Yildirim,et al.  Strong coupling of the Fe-spin state and the As-As hybridization in iron-pnictide superconductors from first-principle calculations. , 2009, Physical review letters.

[18]  H. Sugawara,et al.  Abrupt Emergence of Pressure-Induced Superconductivity of 34K in SrFe_2As_2 : A Resistivity Study under Pressure(Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2009 .

[19]  U. Burkhardt,et al.  AFe2As2 (A = Ca, Sr, Ba, Eu) and SrFe2-xTMxAs2 (TM  = Mn, Co, Ni): crystal structure, charge doping, magnetism and superconductivity , 2009, 0901.1282.

[20]  P. Zavalij,et al.  Superconducting and ferromagnetic phases induced by lattice distortions in stoichiometric SrFe2As2 single crystals. , 2008, Physical review letters.

[21]  J. Lynn,et al.  Lattice collapse and quenching of magnetism in CaFe 2 As 2 under pressure: A single-crystal neutron and x-ray diffraction investigation , 2008, 0811.2013.

[22]  R. Nagalakshmi,et al.  Anisotropic magnetic and superconducting properties of CaFe 2-x Co x As 2 (x=0,0.06) single crystals , 2008, 0810.0848.

[23]  A. Savici,et al.  Superconducting state coexisting with a phase-separated static magnetic order in (Ba,K)Fe2As2, (Sr,Na)Fe2As2, and CaFe2As2 , 2008, 0808.1425.

[24]  G. Lonzarich,et al.  Superconductivity up to 29 K in SrFe2As2 and BaFe2As2 at high pressures , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[25]  O. Korneta,et al.  Non-Fermi-liquid behavior in single-crystal CaRuO3: Comparison to ferromagnetic SrRuO3 , 2008 .

[26]  Alan I. Goldman,et al.  Lattice and magnetic instabilities in CaFe$_{2}$As$_{2}$ , 2008 .

[27]  K. Maiti,et al.  Observation of particle hole asymmetry and phonon excitations in non-Fermi-liquid systems: A high-resolution photoemission study of ruthenates , 2006, cond-mat/0604648.

[28]  K. Maiti Role of covalency in the ground-state properties of perovskite ruthenates: A first-principles study using local spin density approximations , 2006, cond-mat/0605553.

[29]  K. Maiti Electronic structure of BaIrO 3 : A first-principles study using the local spin density approximation , 2006, cond-mat/0605555.

[30]  A. Georges,et al.  Mott transition and suppression of orbital fluctuations in orthorhombic 3d1 perovskites. , 2003, Physical review letters.

[31]  Anton Kokalj,et al.  Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale , 2003 .

[32]  T. Geballe,et al.  Reservoir Layers in High T c Mercury Cuprates , 1999, cond-mat/9904435.

[33]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.