Inherited variants in the inner centromere protein (INCENP) gene of the chromosomal passenger complex contribute to the susceptibility of ER-negative breast cancer.

The chromosomal passenger complex (CPC) plays a pivotal role in the regulation of cell division. Therefore, inherited CPC variability could influence tumor development. The present candidate gene approach investigates the relationship between single nucleotide polymorphisms (SNPs) in genes encoding key CPC components and breast cancer risk. Fifteen SNPs in four CPC genes (INCENP, AURKB, BIRC5 and CDCA8) were genotyped in 88 911 European women from 39 case-control studies of the Breast Cancer Association Consortium. Possible associations were investigated in fixed-effects meta-analyses. The synonymous SNP rs1675126 in exon 7 of INCENP was associated with overall breast cancer risk [per A allele odds ratio (OR) 0.95, 95% confidence interval (CI) 0.92-0.98, P = 0.007] and particularly with estrogen receptor (ER)-negative breast tumors (per A allele OR 0.89, 95% CI 0.83-0.95, P = 0.0005). SNPs not directly genotyped were imputed based on 1000 Genomes. The SNPs rs1047739 in the 3' untranslated region and rs144045115 downstream of INCENP showed the strongest association signals for overall (per T allele OR 1.03, 95% CI 1.00-1.06, P = 0.0009) and ER-negative breast cancer risk (per A allele OR 1.06, 95% CI 1.02-1.10, P = 0.0002). Two genotyped SNPs in BIRC5 were associated with familial breast cancer risk (top SNP rs2071214: per G allele OR 1.12, 95% CI 1.04-1.21, P = 0.002). The data suggest that INCENP in the CPC pathway contributes to ER-negative breast cancer susceptibility in the European population. In spite of a modest contribution of CPC-inherited variants to the total burden of sporadic and familial breast cancer, their potential as novel targets for breast cancer treatment should be further investigated.

Jaana M. Hartikainen | Kristen S Purrington | S. Cross | M. Beckmann | P. Fasching | A. Ashworth | C. Vachon | Jingmei Li | K. Czene | P. Hall | K. Humphreys | J. Olson | F. Couch | H. Brenner | J. Chang-Claude | S. Chanock | M. García-Closas | J. Benítez | P. Neven | G. Giles | J. Hopper | B. Henderson | C. Haiman | T. Dörk | M. Southey | A. Cox | D. Easton | A. Hollestelle | A. Broeks | P. Pharoah | D. Lambrechts | J. Peto | L. Le Marchand | P. Bugert | N. Orr | F. Schumacher | Daniel Vincent | H. Brauch | V. Kristensen | W. Zheng | H. Anton-Culver | P. Guénel | A. Dunning | Shahana Ahmed | O. Fletcher | N. Johnson | G. Chenevix-Trench | S. Bojesen | B. Nordestgaard | J. Lissowska | H. Nevanlinna | N. Bogdanova | R. Tollenaar | P. Devilee | R. Milne | A. González-Neira | U. Hamann | Y. Ko | A. Mannermaa | V. Kosma | V. Kataja | J. Hartikainen | M. Shah | N. Miller | M. Kerin | A. Lindblom | K. Michailidou | J. Dennis | M. Schmidt | M. Bolla | Qin Wang | T. Muranen | K. Aittomäki | C. Blomqvist | F. Bacot | D. Tessier | C. Luccarini | S. F. Nielsen | H. Flyger | Xianshu Wang | A. Rudolph | D. Flesch‐Janys | T. Truong | F. Menegaux | F. Marmé | B. Burwinkel | M. Reed | E. Sawyer | I. Tomlinson | I. Andrulis | J. Knight | G. Glendon | S. Margolin | M. Hooning | C. Apicella | H. Tsimiklis | A. Ekici | V. Arndt | C. Stegmaier | A. Swerdlow | J. Figueroa | M. Goldberg | F. Labrèche | M. Dumont | R. Winqvist | K. Pylkäs | A. Jukkola-Vuorinen | M. Grip | T. Brüning | P. Radice | P. Peterlongo | C. Seynaeve | A. Jakubowska | J. Lubiński | K. Durda | A. Toland | Q. Cai | M. Shrubsole | J. Simard | H. Darabi | M. Eriksson | M. Schoemaker | P. Seibold | M. Pilar Zamora | J. A. Arias Pérez | C. V. van Asperen | Rongxi Yang | D. Torres | L. Koppert | D. Yannoukakos | C. Baynes | M. Maranian | S. Tchatchou | S. Peeters | M. Kriege | F. Hogervorst | S. Cornelissen | G. Scuvera | M. Ruebner | Thomas Dünnebier | M. Kabisch | J. Lorenzo Bermejo | C. Weltens | A. K. Dieffenbach | J. Brand | C. Mclean | K. Purrington | B. Perkins | Judith S. Brand | Shibo Ying | S. Fortuzzi | S. Slettedahl | M. Sanchez | I. dos-Santos-Silva | Katarzyna Jaworska–Bieniek | C. Mclean | P. Hall | Hatef Darabi | Mervi Grip | B. Henderson | Qin Wang | D. Flesch-Janys | Thérèse Truong | J. A. Arias Perez | Stefano Fortuzzi | Diana Torres

[1]  W. Willett,et al.  A Genome-Wide “Pleiotropy Scan” Does Not Identify New Susceptibility Loci for Estrogen Receptor Negative Breast Cancer , 2014, PloS one.

[2]  Paul D P Pharoah,et al.  Inherited genetic susceptibility to breast cancer: the beginning of the end or the end of the beginning? , 2013, The American journal of pathology.

[3]  J. Lubiński,et al.  Ten-year survival in patients with BRCA1-negative and BRCA1-positive breast cancer. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[4]  Jaana M. Hartikainen,et al.  Large-scale genotyping identifies 41 new loci associated with breast cancer risk , 2013, Nature Genetics.

[5]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[6]  W. Earnshaw,et al.  The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis , 2012, Nature Reviews Molecular Cell Biology.

[7]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[8]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[9]  S. Lens,et al.  Cell division control by the Chromosomal Passenger Complex. , 2012, Experimental cell research.

[10]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[11]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[12]  Benjamin P. Berman,et al.  FunciSNP: an R/bioconductor tool integrating functional non-coding data sets with genetic association studies to identify candidate regulatory SNPs , 2012, Nucleic acids research.

[13]  Mridula Shukla,et al.  Survivin expression and targeting in breast cancer. , 2012, Surgical oncology.

[14]  M. Fuller,et al.  Role of Survivin in cytokinesis revealed by a separation-of-function allele , 2011, Molecular biology of the cell.

[15]  Mathew W. Wright,et al.  Update of the human secretoglobin (SCGB) gene superfamily and an example of 'evolutionary bloom' of androgen-binding protein genes within the mouse Scgb gene superfamily , 2011, Human Genomics.

[16]  R. Medema,et al.  Chromosome Segregation Errors as a Cause of DNA Damage and Structural Chromosome Aberrations , 2011, Science.

[17]  C. Mathers,et al.  Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008 , 2010, International journal of cancer.

[18]  R. Medema,et al.  Shared and separate functions of polo-like kinases and aurora kinases in cancer , 2010, Nature Reviews Cancer.

[19]  Montserrat Garcia-Closas,et al.  Genetic susceptibility to breast cancer , 2010, Molecular oncology.

[20]  Stefan Hümmer,et al.  Cdk1 Negatively Regulates Midzone Localization of the Mitotic Kinesin Mklp2 and the Chromosomal Passenger Complex , 2009, Current Biology.

[21]  J. V. van Deursen,et al.  Whole chromosome instability and cancer: a complex relationship. , 2008, Trends in genetics : TIG.

[22]  K. Hemminki,et al.  Etiologic impact of known cancer susceptibility genes. , 2008, Mutation research.

[23]  U. Klein,et al.  Structure of a Survivin–Borealin–INCENP Core Complex Reveals How Chromosomal Passengers Travel Together , 2007, Cell.

[24]  P. Bugert,et al.  Aurora kinases A and B and familial breast cancer risk. , 2007, Cancer letters.

[25]  R. Redon,et al.  Relative Impact of Nucleotide and Copy Number Variation on Gene Expression Phenotypes , 2007, Science.

[26]  M. Duffy,et al.  Lipophilin B: A gene preferentially expressed in breast tissue and upregulated in breast cancer , 2006, International journal of cancer.

[27]  K. Hemminki,et al.  Constraints for genetic association studies imposed by attributable fraction and familial risk. , 2006, Carcinogenesis.

[28]  U. Klein,et al.  Centromere targeting of the chromosomal passenger complex requires a ternary subcomplex of Borealin, Survivin, and the N-terminal domain of INCENP. , 2006, Molecular biology of the cell.

[29]  Koichi Furukawa,et al.  Complex formation of Plk1 and INCENP required for metaphase–anaphase transition , 2006, Nature Cell Biology.

[30]  R. Medema,et al.  Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody , 2006, EMBO reports.

[31]  Andrea Musacchio,et al.  Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. , 2005, Molecular cell.

[32]  J. Ferlay,et al.  Cancer incidence and mortality in Europe, 2004. , 2005, Annals of oncology : official journal of the European Society for Medical Oncology.

[33]  Peter Boyle,et al.  Cancer incidence and mortality in Europe , 2005, Sozial- und Präventivmedizin.

[34]  J. Foekens,et al.  Mammaglobin is associated with low-grade, steroid receptor-positive breast tumors from postmenopausal patients, and has independent prognostic value for relapse-free survival time. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[35]  Yong Xu,et al.  A mutation found in the promoter region of the human survivin gene is correlated to overexpression of survivin in cancer cells. , 2004, DNA and cell biology.

[36]  S. Farrington,et al.  Prognosis in DNA Mismatch Repair Deficient Colorectal Cancer: are all MSI Tumours Equivalent? , 2004, Familial Cancer.

[37]  E. Nigg,et al.  Exploring the functional interactions between Aurora B, INCENP, and survivin in mitosis. , 2003, Molecular biology of the cell.

[38]  J. Schumacher,et al.  Phosphorylation of the Carboxyl Terminus of Inner Centromere Protein (INCENP) by the Aurora B Kinase Stimulates Aurora B Kinase Activity* , 2002, The Journal of Biological Chemistry.

[39]  Niall O'Higgins,et al.  Mammaglobin a: a promising marker for breast cancer. , 2002, Clinical chemistry.

[40]  Richard R. Adams,et al.  Essential Roles of Drosophila Inner Centromere Protein (Incenp) and Aurora B in Histone H3 Phosphorylation, Metaphase Chromosome Alignment, Kinetochore Disjunction, and Chromosome Segregation , 2001, The Journal of cell biology.

[41]  D. Gerloff,et al.  Human INCENP colocalizes with the Aurora-B/AIRK2 kinase on chromosomes and is overexpressed in tumour cells , 2001, Chromosoma.

[42]  J. Peto,et al.  High constant incidence in twins and other relatives of women with breast cancer , 2000, Nature Genetics.

[43]  M. Mendoza,et al.  Incenp and an Aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis , 2000, Current Biology.

[44]  R. R. Adams,et al.  INCENP binds the Aurora-related kinase AIRK2 and is required to target it to chromosomes, the central spindle and cleavage furrow , 2000, Current Biology.

[45]  J. Kaprio,et al.  Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. , 2000, The New England journal of medicine.

[46]  M. Watson,et al.  Mammaglobin expression in primary, metastatic, and occult breast cancer. , 1999, Cancer research.

[47]  H. Mori,et al.  Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. , 1999, Cancer research.

[48]  A. Fraser,et al.  Caenorhabditis elegans inhibitor of apoptosis protein (IAP) homologue BIR-1 plays a conserved role in cytokinesis , 1999, Current Biology.

[49]  W. Earnshaw,et al.  INCENP Centromere and Spindle Targeting: Identification of Essential Conserved Motifs and Involvement of Heterochromatin Protein HP1 , 1998, The Journal of cell biology.

[50]  H. Katayama,et al.  Multinuclearity and increased ploidy caused by overexpression of the aurora- and Ipl1-like midbody-associated protein mitotic kinase in human cancer cells. , 1998, Cancer research.

[51]  M. Tatsuka,et al.  AIM‐1: a mammalian midbody‐associated protein required for cytokinesis , 1998, The EMBO journal.

[52]  D. Altieri,et al.  A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma , 1997, Nature Medicine.

[53]  M. Watson,et al.  Mammaglobin, a mammary-specific member of the uteroglobin gene family, is overexpressed in human breast cancer. , 1996, Cancer research.

[54]  W. Earnshaw,et al.  Analysis of the distribution of the INCENPs throughout mitosis reveals the existence of a pathway of structural changes in the chromosomes during metaphase and early events in cleavage furrow formation. , 1991, Journal of cell science.

[55]  F W MULSOW,et al.  Cancer incidence and mortality , 2019, Health at a Glance: Europe.