Internal defect localization in 980 nm ridge waveguide lasers

High power lasers emitting at 980 nm are essential for pumping sources of erbium-doped fiber amplifiers (EDFAs). These are used in longer distance telecommunications. Stability and reliability of the modules are two key characteristics. The present paper investigates 'sudden random failures' of double quantum-well 980 nm high power ridge waveguide lasers implemented in EDFAs. For the inspection of the external and internal status of the device we used optical spectrum modulation experiments, electroluminescence measurements, scanning electron microscopy and cathodoluminescence investigations. The localization of internal defects is the main point of this work. Two different 'sudden random failures' were found: catastrophical optical mirror damage (COMD) and internal dark line defect (DLD) formation.