Quantum dots from microfluidics for nanomedical application.

Nanomedicine, with its advantages of rapid diagnosis, high sensitivity and high accuracy, has aroused extensive interest of researchers, as the cornerstone of nanomedicine, nanomaterials achieve extra attention and rapid development. Among nanomaterials, quantum dots stand out due to their long fluorescence lifetime and excellent antiphotobleaching performance. At present, quantum dots have been applied to the diagnosis and treatment of diseases and various strategies have been presented to fabricate quantum dots. Microfluidic is one promising strategy since microfluidic device can provide an effective platform for the diagnosis of trace disease markers. In this paper, research progress in the microfluidic synthesis of quantum dots and quantum dot-based nanomedical application is discussed. The classification of quantum dots is firstly introduced, and the researches on quantum dots synthesis based on microfluidic is then mainly described, including the sort, design, preparation of microfluidic synthesis device and its application in synthesis. Nanomedical applications of the quantum dots is especially described and emphasized. The prospects for future development of quantum dots from microfluidic for nanomedical application are finally presented. This article is categorized under: Diagnostic Tools > in vitro Nanoparticle-Based Sensing.

[1]  Yuanjin Zhao,et al.  Convenient generation of quantum dot-incorporated photonic crystal beads for multiplex bioassays. , 2014, Journal of biomedical nanotechnology.

[2]  Zhiqiang Gao,et al.  Carbon quantum dots and their applications. , 2015, Chemical Society reviews.

[3]  B. V. Shanabrook,et al.  PHONONS IN SELF-ASSEMBLED (IN,GA,AL)SB QUANTUM DOTS , 1996 .

[4]  X. Ren,et al.  One-step hydrothermal synthesis of monolayer MoS2 quantum dots for highly efficient electrocatalytic hydrogen evolution , 2015 .

[5]  C. Mao,et al.  Fluorescent carbon nanoparticles derived from candle soot. , 2007, Angewandte Chemie.

[6]  M. Kormunda,et al.  Self-Assembled BN and BCN Quantum Dots Obtained from High Intensity Ultrasound Exfoliated Nanosheets , 2014 .

[7]  Yang-Fang Chen,et al.  Growth and photoluminescence study of ZnTe quantum dots , 1999 .

[8]  Liang Li,et al.  Core/Shell semiconductor nanocrystals. , 2009, Small.

[9]  Zhenhui Kang,et al.  A polyoxometalate-assisted electrochemical method for silicon nanostructures preparation: from quantum dots to nanowires. , 2007, Journal of the American Chemical Society.

[10]  V. Rotello,et al.  Continuous synthesis of high quality CdSe quantum dots in supercritical fluids , 2015 .

[11]  Aliaksandra Rakovich,et al.  Semiconductor versus graphene quantum dots as fluorescent probes for cancer diagnosis and therapy applications. , 2018, Journal of materials chemistry. B.

[12]  Y. S. Zhang,et al.  Microfluidics‐Enabled Multimaterial Maskless Stereolithographic Bioprinting , 2018, Advanced materials.

[13]  Jiaxing Li,et al.  Polymer nanodots of graphitic carbon nitride as effective fluorescent probes for the detection of Fe³⁺ and Cu²⁺ ions. , 2014, Nanoscale.

[14]  Z. Gan,et al.  Quantum confinement effects across two-dimensional planes in MoS2 quantum dots , 2015 .

[15]  U. Krull,et al.  Detection of a cancer biomarker protein on modified cellulose paper by fluorescence using aptamer-linked quantum dots. , 2017, The Analyst.

[16]  D. Allwood,et al.  Fabrication of luminescent monolayered tungsten dichalcogenides quantum dots with giant spin-valley coupling. , 2013, ACS nano.

[17]  K. Jensen,et al.  Mechanistic Insights and Controlled Synthesis of Radioluminescent ZnSe Quantum Dots Using a Microfluidic Reactor , 2018, Chemistry of Materials.

[18]  Michael Grätzel,et al.  Cleavage of Water by Visible‐Light Irradiation of Colloidal CdS Solutions; Inhibition of Photocorrosion by RuO2 , 1981 .

[19]  J. Tour,et al.  Coal as an abundant source of graphene quantum dots , 2013, Nature Communications.

[20]  Peng Chen,et al.  Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. , 2016, Chemical Society reviews.

[21]  Louis E. Brus,et al.  Size effects in the excited electronic states of small colloidal CdS crystallites , 1984 .

[22]  Nasser Peyghambarian,et al.  Synthesis and Characterization of InP, GaP, and GaInP2 Quantum Dots , 1995 .

[23]  Wei Huang,et al.  Black phosphorus quantum dots. , 2015, Angewandte Chemie.

[24]  D. Pang,et al.  Picoliter droplets developed as microreactors for ultrafast synthesis of multi-color water-soluble CdTe quantum dots. , 2013, Chemical communications.

[25]  Shin‐Hyun Kim,et al.  Photonic Capsule Sensors with Built‐In Colloidal Crystallites , 2018, Advanced materials.

[26]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[27]  T. Krauss,et al.  Coming attractions for semiconductor quantum dots , 2011 .

[28]  V. Vasić,et al.  Transient bleaching of small lead sulfide colloids: influence of surface properties , 1990 .

[29]  Uwe R. Kortshagen,et al.  Silicon nanocrystals with ensemble quantum yields exceeding 60 , 2006 .

[30]  Feng Guo,et al.  On-demand preparation of quantum dot-encoded microparticles using a droplet microfluidic system. , 2011, Lab on a chip.

[31]  Ya‐Ping Sun,et al.  Quantum-sized carbon dots for bright and colorful photoluminescence. , 2006, Journal of the American Chemical Society.

[32]  Peng Chen,et al.  Revealing the tunable photoluminescence properties of graphene quantum dots , 2014 .

[33]  Xionggang Lu,et al.  Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. , 2008, Acta crystallographica. Section B, Structural science.

[34]  Peiyi Wu,et al.  Facile preparation and multifunctional applications of boron nitride quantum dots. , 2015, Nanoscale.

[35]  Yu Wang,et al.  Bioinspired Photonic Barcodes with Graphene Oxide Encapsulation for Multiplexed MicroRNA Quantification. , 2018, Small.

[36]  H. Stone,et al.  Dynamic regimes of electrified liquid filaments , 2018, Proceedings of the National Academy of Sciences.

[37]  W. Liu,et al.  Integrated parallel microfluidic device for simultaneous preparation of multiplex optical-encoded microbeads with distinct quantum dot barcodes , 2011 .

[38]  Tijana Rajh,et al.  Size quantization in small semiconductor particles , 1985 .

[39]  Paola Laurino,et al.  Synthesis of carbohydrate-functionalized quantum dots in microreactors. , 2010, Angewandte Chemie.

[40]  Soonjo Kwon,et al.  Droplet-Based Microfluidic Reactor for Synthesis of Size-Controlled CdSe Quantum Dots. , 2018, Journal of nanoscience and nanotechnology.

[41]  John X. J. Zhang,et al.  Microfluidic synthesis of functional inorganic micro-/nanoparticles and applications in biomedical engineering , 2018 .

[42]  Xin Yan,et al.  Synthesis of large, stable colloidal graphene quantum dots with tunable size. , 2010, Journal of the American Chemical Society.

[43]  P. Chu,et al.  Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents. , 2015, Angewandte Chemie.

[44]  Yuanhua Sang,et al.  Fluorescent graphene quantum dots as traceable, pH-sensitive drug delivery systems , 2015, International journal of nanomedicine.

[45]  Latha A. Gearheart,et al.  Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. , 2004, Journal of the American Chemical Society.

[46]  Ursula Rothlisberger,et al.  Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells , 2016 .

[47]  Daqin Chen,et al.  Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications , 2019, Journal of Materials Chemistry C.

[48]  B. K. Gupta,et al.  Graphene quantum dots derived from carbon fibers. , 2012, Nano letters.

[49]  D. Ghosh,et al.  Dependence of halide composition on the stability of highly efficient all-inorganic cesium lead halide perovskite quantum dot solar cells , 2018, Solar Energy Materials and Solar Cells.

[50]  H. Luo,et al.  Electrochemically induced Fenton reaction of few-layer MoS2 nanosheets: preparation of luminescent quantum dots via a transition of nanoporous morphology. , 2014, Nanoscale.

[51]  Ho Cheung Shum,et al.  Microfluidic generation of multifunctional quantum dot barcode particles. , 2011, Journal of the American Chemical Society.

[52]  T. Park,et al.  Diverse Applications of Nanomedicine , 2017, ACS nano.

[53]  Katla Sai Krishna,et al.  Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications. , 2013, Advanced drug delivery reviews.

[54]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[55]  Wei Li,et al.  Live cell imaging of single genomic loci with quantum dot-labeled TALEs , 2017, Nature Communications.

[56]  Hua Zhang,et al.  A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. , 2015, Angewandte Chemie.

[57]  Youwei Du,et al.  Monolayer MoS2 quantum dots as catalysts for efficient hydrogen evolution , 2015 .

[58]  Bing Xu,et al.  Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. , 2009, Accounts of chemical research.

[59]  A. Baranov,et al.  Application of semiconductor quantum dots in bioimaging and biosensing. , 2017, Journal of materials chemistry. B.

[60]  Fan-Ching Chien,et al.  Targeted nuclear delivery using peptide-coated quantum dots. , 2011, Bioconjugate chemistry.

[61]  Rustem F Ismagilov,et al.  Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. , 2004, Lab on a chip.

[62]  Norris,et al.  Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. , 1996, Physical review. B, Condensed matter.

[63]  Joseph E. Reiner,et al.  Preparation of nanoparticles by continuous-flow microfluidics , 2008 .

[64]  Sanjiv S Gambhir,et al.  Self-illuminating quantum dot conjugates for in vivo imaging , 2006, Nature Biotechnology.

[65]  Ulrich J. Krull,et al.  Biosensing with Quantum Dots: A Microfluidic Approach , 2011, Sensors.

[66]  L. Brus,et al.  Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution , 1983 .

[67]  Dhiman Sarkar,et al.  Graphene quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. , 2014, Journal of materials chemistry. B.

[68]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[69]  Tong Zhang,et al.  High quantum-yield luminescent MoS2 quantum dots with variable light emission created via direct ultrasonic exfoliation of MoS2 nanosheets , 2015 .

[70]  Gengfeng Zheng,et al.  Enhancing Perovskite Solar Cell Performance by Interface Engineering Using CH3NH3PbBr0.9I2.1 Quantum Dots. , 2016, Journal of the American Chemical Society.

[71]  R. Li,et al.  An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). , 2007, Journal of the American Chemical Society.

[72]  A. I. Ekimov,et al.  Quantum size effect in semiconductor microcrystals , 1985 .

[73]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[74]  Ho Cheung Shum,et al.  Generation of High-Order All-Aqueous Emulsion Drops by Osmosis-Driven Phase Separation. , 2018, Small.

[75]  Jing Li,et al.  One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. , 2012, Nanoscale.

[76]  P. Kamat,et al.  CsPbBr3 Solar Cells: Controlled Film Growth through Layer-by-Layer Quantum Dot Deposition , 2017 .

[77]  M. Shaijumon,et al.  MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. , 2014, ACS nano.

[78]  Detlef W. Bahnemann,et al.  Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study , 1987 .

[79]  S. Nie,et al.  Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules , 2001, Nature Biotechnology.

[80]  F. Wise,et al.  Lead salt quantum dots: the limit of strong quantum confinement. , 2000, Accounts of chemical research.

[81]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[82]  S. H. Tsang,et al.  Controllable Synthesis of Highly Luminescent Boron Nitride Quantum Dots. , 2015, Small.

[83]  Junqing Hu,et al.  A novel and facile synthesis of porous SiO2-coated ultrasmall Se particles as a drug delivery nanoplatform for efficient synergistic treatment of cancer cells. , 2016, Nanoscale.

[84]  K. Jensen,et al.  Synthesis of micro and nanostructures in microfluidic systems. , 2010, Chemical Society reviews.

[85]  Jing Feng Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers , 2014 .

[86]  Sheila N. Baker,et al.  Luminescent carbon nanodots: emergent nanolights. , 2010, Angewandte Chemie.

[87]  V. Štengl,et al.  Ultrasonic preparation of tungsten disulfide single-layers and quantum dots , 2015 .

[88]  Yuan Pu,et al.  Colloidal Synthesis of Semiconductor Quantum Dots toward Large Scale Production: A Review , 2018 .

[89]  Juan Zhou,et al.  A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. , 2013, Chemical communications.

[90]  Ali Khademhosseini,et al.  Evolution and Clinical Translation of Drug Delivery Nanomaterials. , 2017, Nano today.

[91]  Lichun Zhang,et al.  Carbon nitride quantum dots: a novel chemiluminescence system for selective detection of free chlorine in water. , 2014, Analytical chemistry.

[92]  L. C. Barbosa,et al.  PbTe quantum dot doped glasses with absorption edge in the 1.5 mu m wavelength region , 1995 .

[93]  Josef Hormes,et al.  Microfluidic synthesis of nanomaterials. , 2008, Small.

[94]  M. Strano,et al.  Aptamer-capped nanocrystal quantum dots: a new method for label-free protein detection. , 2006, Journal of the American Chemical Society.

[95]  Jie Wang,et al.  Microfluidic synthesis of barcode particles for multiplex assays. , 2015, Small.

[96]  H. Xiong,et al.  Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism. , 2015, ACS nano.

[97]  Changming Cheng,et al.  A graphene quantum dot@Fe3O4@SiO2 based nanoprobe for drug delivery sensing and dual-modal fluorescence and MRI imaging in cancer cells. , 2017, Biosensors & bioelectronics.

[98]  C. Howard,et al.  Symmetry rules and strain/order-parameter relationships for coupling between octahedral tilting and cooperative Jahn-Teller transitions in ABX3 perovskites. I. Theory. , 2009, Acta crystallographica. Section B, Structural science.

[99]  Oleksandr Isaienko,et al.  Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium-Lead-Halide Perovskite Quantum Dots. , 2016, Nano letters.

[100]  Igor L. Medintz,et al.  Biosensing with Luminescent Semiconductor Quantum Dots , 2006, Sensors (Basel, Switzerland).

[101]  Marek Osinski,et al.  Synthesis and characterization of InP and InN colloidal quantum dots , 2005, SPIE BiOS.

[102]  D. Allwood,et al.  Fabrication and luminescence of monolayered boron nitride quantum dots. , 2014, Small.

[103]  R. L. Wells,et al.  The Use of Tris(trimethylsilyl)arsine to Prepare Gallium Arsenide and Indium Arsenide , 1989 .

[104]  X. Zheng,et al.  Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. , 2015, Small.

[105]  H. Santos,et al.  Electrospun Photocrosslinkable Hydrogel Fibrous Scaffolds for Rapid In Vivo Vascularized Skin Flap Regeneration , 2017 .

[106]  É. Boisselier,et al.  Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. , 2010, Chemical reviews.

[107]  Chang Ming Li,et al.  One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black , 2012 .

[108]  Paul H. Holloway,et al.  GdIII‐Functionalized Fluorescent Quantum Dots as Multimodal Imaging Probes , 2006 .

[109]  Lianhui Wang,et al.  Aqueous phase preparation of ultrasmall MoSe2 nanodots for efficient photothermal therapy of cancer cells. , 2016, Nanoscale.

[110]  J. Baumberg,et al.  Quenching of CdSe quantum dot emission, a new approach for biosensing. , 2005, Chemical communications.

[111]  Ashley R. Marshall,et al.  Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics. , 2018, Journal of the American Chemical Society.

[112]  Feng Yan,et al.  Semiconductor Quantum Dots for Biomedicial Applications , 2011, Sensors.

[113]  Jin-Chen Hsu,et al.  Fabrication of ZnSe quantum dots under Volmer–Weber mode by metalorganic chemical vapor deposition , 1997 .

[114]  Yuanjin Zhao,et al.  Emerging Droplet Microfluidics. , 2017, Chemical reviews.

[115]  L. Tang,et al.  Nonporous Silica Nanoparticles for Nanomedicine Application. , 2013, Nano today.

[116]  Jung Sang Suh,et al.  Size-controllable and low-cost fabrication of graphene quantum dots using thermal plasma jet. , 2014, ACS nano.

[117]  R. Faria,et al.  A new disposable microfluidic electrochemical paper-based device for the simultaneous determination of clinical biomarkers. , 2019, Talanta.

[118]  E. Wang,et al.  Chemiluminescence of CsPbBr3 Perovskite Nanocrystal on the Hexane/Water Interface. , 2018, Analytical chemistry.

[119]  Jimmy C. Yu,et al.  g-C3N4 quantum dots: direct synthesis, upconversion properties and photocatalytic application. , 2014, Chemical communications.

[120]  Liang Yan,et al.  Tungsten Sulfide Quantum Dots as Multifunctional Nanotheranostics for In Vivo Dual-Modal Image-Guided Photothermal/Radiotherapy Synergistic Therapy. , 2015, ACS nano.

[121]  W. Cui,et al.  Tumor-Triggered Controlled Drug Release from Electrospun Fibers Using Inorganic Caps for Inhibiting Cancer Relapse. , 2015, Small.

[122]  Helen Song,et al.  A microfluidic system for controlling reaction networks in time. , 2003, Angewandte Chemie.

[123]  Dong Ju Han,et al.  Dual role of blue luminescent MoS2 quantum dots in fluorescence resonance energy transfer phenomenon. , 2014, Small.

[124]  L. Qu,et al.  An Electrochemical Avenue to Green‐Luminescent Graphene Quantum Dots as Potential Electron‐Acceptors for Photovoltaics , 2011, Advanced materials.

[125]  C. Kappe,et al.  Continuous-flow synthesis of CdSe quantum dots: a size-tunable and scalable approach. , 2013, Chemistry.

[126]  Hongyan Shi,et al.  Water‐Soluble Monolayer Molybdenum Disulfide Quantum Dots with Upconversion Fluorescence , 2015 .

[127]  D. Pang,et al.  Controllable synthesis of nanocrystals in droplet reactors. , 2017, Lab on a chip.

[128]  S. Ruffenach,et al.  Indium nitride quantum dots grown by metalorganic vapor phase epitaxy , 2003 .

[129]  Dinesh Kumar,et al.  Microfluidic Synthesis of Nanoparticles and their Biosensing Applications , 2016, Critical reviews in analytical chemistry.

[130]  Hongbo Zhang,et al.  Fabrication of redox-responsive doxorubicin and paclitaxel prodrug nanoparticles with microfluidics for selective cancer therapy. , 2019, Biomaterials science.

[131]  F. Wise,et al.  Electronic structure and optical properties of PbS and PbSe quantum dots , 1997 .

[132]  Yuanjin Zhao,et al.  Quantum-dot-encapsulated core-shell barcode particles from droplet microfluidics. , 2018, Journal of materials chemistry. B.

[133]  Fang Liu,et al.  Strongly green-photoluminescent graphene quantum dots for bioimaging applications. , 2011, Chemical communications.

[134]  Le Li,et al.  Facile one-pot synthesis of MoS2 quantum dots-graphene-TiO2 composites for highly enhanced photocatalytic properties. , 2015, Chemical communications.

[135]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[136]  Mengli Liu,et al.  Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. , 2016, The Analyst.

[137]  Chun-yang Zhang,et al.  Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. , 2015, Chemical reviews.

[138]  Dongqing Wu,et al.  An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. , 2009, Angewandte Chemie.

[139]  Klavs F Jensen,et al.  Investigation of indium phosphide nanocrystal synthesis using a high-temperature and high-pressure continuous flow microreactor. , 2011, Angewandte Chemie.

[140]  Christophe Danelon,et al.  Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. , 2006, Angewandte Chemie.

[141]  A. G. Cullis,et al.  Visible light emission due to quantum size effects in highly porous crystalline silicon , 1991, Nature.

[142]  Lei Guo,et al.  Cutting sp2clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence , 2012 .

[143]  Yongfang Li,et al.  Energy-Down-Shift CsPbCl3:Mn Quantum Dots for Boosting the Efficiency and Stability of Perovskite Solar Cells , 2017 .

[144]  U. Kortshagen,et al.  High-yield plasma synthesis of luminescent silicon nanocrystals. , 2005, Nano letters.

[145]  M. Kovalenko,et al.  Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I) , 2015, Nano letters.

[146]  V. Loriette,et al.  In Vivo Imaging of Single Tumor Cells in Fast-Flowing Bloodstream Using Near-Infrared Quantum Dots and Time-Gated Imaging. , 2019, ACS nano.

[147]  S. Mahamuni,et al.  Luminescence behaviour of chemically grown ZnO quantum dots , 1998 .

[148]  Xuwei Chen,et al.  Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[149]  Shen Liu,et al.  Injectable Stem Cell‐Laden Photocrosslinkable Microspheres Fabricated Using Microfluidics for Rapid Generation of Osteogenic Tissue Constructs , 2016 .

[150]  Axel Günther,et al.  A microfabricated gas-liquid segmented flow reactor for high-temperature synthesis: the case of CdSe quantum dots. , 2005, Angewandte Chemie.

[151]  Elodie Boisselier,et al.  Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. , 2009, Chemical Society reviews.

[152]  Alexander L. Efros,et al.  Interband absorption of light in a semiconductor sphere , 2005 .

[153]  Chunhai Fan,et al.  Silicon nanostructures for bioapplications , 2010 .

[154]  Jarno Salonen,et al.  Fabrication of a Multifunctional Nano‐in‐micro Drug Delivery Platform by Microfluidic Templated Encapsulation of Porous Silicon in Polymer Matrix , 2014, Advanced materials.

[155]  P. Ajayan,et al.  Electrochemical synthesis of luminescent MoS2 quantum dots. , 2015, Chemical communications.

[156]  R. Friend,et al.  Chemically diverse and multifunctional hybrid organic–inorganic perovskites , 2017 .

[157]  Susan M. Kauzlarich,et al.  Synthesis of Alkyl-Terminated Silicon Nanoclusters by a Solution Route , 1999 .

[158]  Zhongze Gu,et al.  Quantum‐Dot‐Tagged Bioresponsive Hydrogel Suspension Array for Multiplex Label‐Free DNA Detection , 2010 .

[159]  Hideki Hirayama,et al.  GROWTH MECHANISMS OF GAN QUANTUM DOTS AND THEIR OPTICAL PROPERTIES , 1998 .

[160]  Bruce E. Gnade,et al.  Mechanisms behind green photoluminescence in ZnO phosphor powders , 1996 .

[161]  Zhen Cheng,et al.  Radiation-luminescence-excited quantum dots for in vivo multiplexed optical imaging. , 2010, Small.

[162]  Prabhat K. Singh,et al.  Thiophenol‐capped ZnS quantum dots , 1993 .

[163]  Ya‐Ping Sun,et al.  Carbon dots for multiphoton bioimaging. , 2007, Journal of the American Chemical Society.

[164]  Chi Zhang,et al.  Colloidal synthesis of MoS2 quantum dots: size-dependent tunable photoluminescence and bioimaging , 2015 .

[165]  Peiyi Wu,et al.  One‐Pot, Facile, and Versatile Synthesis of Monolayer MoS2/WS2 Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction , 2015 .

[166]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[167]  Kenneth A. Dawson,et al.  Protein–Nanoparticle Interactions , 2008, Nano-Enabled Medical Applications.

[168]  Shin‐Hyun Kim,et al.  Photonic Microcapsules Containing Single‐Crystal Colloidal Arrays with Optical Anisotropy , 2019, Advanced materials.

[169]  Haoxu Wang,et al.  Efficient planar CsPbBr3 perovskite solar cells by dual-source vacuum evaporation , 2018, Solar Energy Materials and Solar Cells.

[170]  Xiangyou Li,et al.  Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. , 2011, Chemical communications.

[171]  Lianhui Wang,et al.  RGD-QD-MoS2 nanosheets for targeted fluorescent imaging and photothermal therapy of cancer. , 2017, Nanoscale.

[172]  Yuanjin Zhao,et al.  Molybdenum disulfide-integrated photonic barcodes for tumor markers screening. , 2019, Biosensors & bioelectronics.

[173]  K. Jensen,et al.  Multistage Microfluidic Platform for the Continuous Synthesis of III-V Core/Shell Quantum Dots. , 2018, Angewandte Chemie.

[174]  A. Varenne,et al.  Clickable-Zwitterionic Copolymer Capped-Quantum Dots for in Vivo Fluorescence Tumor Imaging. , 2018, ACS applied materials & interfaces.

[175]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.