Existence of global solutions to isentropic gas dynamics equations with a source term

In this paper we prove existence of isentropic gas dynamic equations with a source term (1.2). To this end we construct a sequence of regular hyperbolic systems (1.1) to approximate the inhomogeneous system of isentropic gas dynamics (1.2). First, for each fixed approximation parameter δ and very general condition on P(ρ), we establish the existence of entropy solutions for the Cauchy problem (1.1) with bounded initial date (1.4). Second, letting ε = o(δ), we obtain a complete proof of the Hloc−1 compactness of weak entropy pairs of system (1.2) in the form η(ρ, u) = ρH(ρ, u) given in Chen-LeFloch (2003). Finally, for the conditions of P(ρ) given in Chen-LeFloch (2003), applied to the results in Theorems 1 and 2, we obtain the global existence of entropy solutions for the Cauchy problem (1.2) with bounded initial date (1.4).

[1]  Gui-Qiang G. Chen,et al.  Convergence of the fractional step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics , 1989 .

[2]  P. Souganidis,et al.  Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates , 1998 .

[3]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .

[4]  B. Perthame,et al.  Kinetic formulation of the isentropic gas dynamics andp-systems , 1994 .

[5]  Yunguang Lu,et al.  Hyperbolic Conservation Laws and the Compensated Compactness Method , 2002 .

[6]  E. Kamke Differentialgleichungen : Lösungsmethoden und Lösungen , 1977 .

[7]  Gui-Qiang G. Chen,et al.  Existence Theory for the Isentropic Euler Equations , 2003 .

[8]  Yun-guang Lu Some results for general systems of isentropic gas dynamics , 2007 .

[9]  F. Murat,et al.  Compacité par compensation , 1978 .

[10]  R. J. Diperna,et al.  Convergence of the viscosity method for isentropic gas dynamics , 1983 .

[11]  Feimin Huang,et al.  Convergence of Viscosity Solutions for Isothermal Gas Dynamics , 2002, SIAM J. Math. Anal..

[12]  R. J. DiPerna Convergence of approximate solutions to conservation laws , 1983 .

[13]  Existence of Solutions to Hyperbolic Conservation Laws with a Source , 1997 .

[14]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[15]  The global Hölder-continuous solution of isentropic gas dynamics , 1993 .

[16]  P. Lax Shock Waves and Entropy , 1971 .

[17]  J. Glimm Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .