Comparative Analysis of Random Utility Models and Fuzzy Logic Models for Representing Gap-Acceptance Behavior Using Data from Driving Simulator Experiments

The paper proposes a comparative analysis of random utility models and fuzzy logic models for representing gap-acceptance behavior at priority intersections, based on data collected from driving simulator tests. Explanatory variables not detectable from on site observations were observed in the experiments. The proposed models include driving styles variables in addition to variables commonly used in gap-acceptance studies. The driving tests have been conducted using STSoftware® fixed-base driving simulator. The comparison between the two kinds of models, performed using the Receiver Operating Characteristic (ROC) curve analysis, indicates that fuzzy models can be considered an alternative to the use of random utility models. Furthermore the ability of driving simulators to provide data not detectable from direct observations is highlighted.

[1]  Claudio Meneguzzer,et al.  Transfer and updating of Logit models of gap-acceptance and their operational implications , 2013 .

[2]  Li-Chiu Chi,et al.  Predicting multilateral trade credit risks: comparisons of Logit and Fuzzy Logic models using ROC curve analysis , 2005, Expert Syst. Appl..

[3]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[4]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[5]  M. Mikulincer,et al.  The multidimensional driving style inventory--scale construct and validation. , 2004, Accident; analysis and prevention.

[6]  J. Hanley,et al.  The meaning and use of the area under a receiver operating characteristic (ROC) curve. , 1982, Radiology.

[7]  Thomas H Maze A PROBABILISTIC MODEL OF GAP ACCEPTANCE BEHAVIOR , 1981 .

[8]  John Douglas Hunt,et al.  Gap acceptance behaviour : Aggregate and logit perspectives : Part 1 , 1997 .

[9]  N. Obuchowski Receiver operating characteristic curves and their use in radiology. , 2003, Radiology.

[10]  Rossi Riccardo,et al.  Transferability of Fuzzy Models of Gap-Acceptance Behavior , 2011 .

[11]  Riccardo Rossi THE EFFECT OF CRISP VARIABLES ON FUZZY MODELS OF GAP-ACCEPTANCE BEHAVIOUR , 2003 .

[12]  Olusegun Adebisi,et al.  INFLUENCE OF STOPPED DELAY ON DRIVER GAP ACCEPTANCE BEHAVIOR , 1989 .

[13]  Chris Lloyd,et al.  Using Smoothed Receiver Operating Characteristic Curves to Summarize and Compare Diagnostic Systems , 1998 .

[14]  Ian H. Witten,et al.  Data mining - practical machine learning tools and techniques, Second Edition , 2005, The Morgan Kaufmann series in data management systems.

[15]  J Wennell,et al.  VEHICLE AND DRIVER EFFECTS ON JUNCTION GAP ACCEPTANCE , 1981 .

[16]  Riccardo Rossi,et al.  Development of Gap Acceptance Fuzzy Models using data from Driving Simulator Experiments , 2011 .

[17]  Claudio Meneguzzer,et al.  Gap-Acceptance Behavior at Priority Intersection: Field Observations Versus Experiments with Driving Simulator , 2011 .

[18]  Jyh-Dong Lin,et al.  Pavement Overlay Effectiveness and Optimal Timing Determination Using Receiver Operating Characteristic Curve and Data Envelopment Analysis Methods , 2008 .

[19]  Shlomo Bekhor,et al.  Study of passing gap acceptance behavior using a driving simulator , 2007 .

[20]  Evi Blana,et al.  DRIVING SIMULATOR VALIDATION STUDIES: A LITERATURE REVIEW , 1996 .

[21]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[22]  Brigitte Charnomordic,et al.  Learning interpretable fuzzy inference systems with FisPro , 2011, Inf. Sci..