Geometric Parameters in Learning Theory
暂无分享,去创建一个
[1] O. Hanner. On the uniform convexity ofLp andlp , 1956 .
[2] Norbert Sauer,et al. On the Density of Families of Sets , 1972, J. Comb. Theory A.
[3] S. Shelah. A combinatorial problem; stability and order for models and theories in infinitary languages. , 1972 .
[4] J. Hoffmann-jorgensen. Sums of independent Banach space valued random variables , 1974 .
[5] R. Dudley. Central Limit Theorems for Empirical Measures , 1978 .
[6] J. Kuelbs. Probability on Banach spaces , 1978 .
[7] Mark G. Karpovsky,et al. Coordinate density of sets of vectors , 1978, Discret. Math..
[8] E. Giné,et al. Some Limit Theorems for Empirical Processes , 1984 .
[9] J. Kahane. Some Random Series of Functions , 1985 .
[10] R. Dudley. Universal Donsker Classes and Metric Entropy , 1987 .
[11] Leslie G. Valiant,et al. A general lower bound on the number of examples needed for learning , 1988, COLT '88.
[12] N. Tomczak-Jaegermann. Banach-Mazur distances and finite-dimensional operator ideals , 1989 .
[13] J. Hoffmann-jorgensen,et al. Probability in Banach Spaces 6 , 1990 .
[14] E. Giné,et al. GAUSSIAN CHARACTERIZATION OF UNIFORM DONSKER CLASSES OF FUNCTIONS , 1991 .
[15] R. Dudley,et al. Uniform and universal Glivenko-Cantelli classes , 1991 .
[16] M. Talagrand,et al. Probability in Banach spaces , 1991 .
[17] M. Talagrand. Type, infratype and the Elton-Pajor theorem , 1992 .
[18] M. Talagrand. Sharper Bounds for Gaussian and Empirical Processes , 1994 .
[19] David Haussler,et al. Sphere Packing Numbers for Subsets of the Boolean n-Cube with Bounded Vapnik-Chervonenkis Dimension , 1995, J. Comb. Theory, Ser. A.
[20] Peter L. Bartlett,et al. The importance of convexity in learning with squared loss , 1998, COLT '96.
[21] László Györfi,et al. A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.
[22] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[23] P. Massart,et al. From Model Selection to Adaptive Estimation , 1997 .
[24] Mathukumalli Vidyasagar,et al. A Theory of Learning and Generalization , 1997 .
[25] 中澤 真,et al. Devroye, L., Gyorfi, L. and Lugosi, G. : A Probabilistic Theory of Pattern Recognition, Springer (1996). , 1997 .
[26] Noga Alon,et al. Scale-sensitive dimensions, uniform convergence, and learnability , 1997, JACM.
[27] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[28] Peter L. Bartlett,et al. The Importance of Convexity in Learning with Squared Loss , 1998, IEEE Trans. Inf. Theory.
[29] Philip M. Long,et al. Prediction, Learning, Uniform Convergence, and Scale-Sensitive Dimensions , 1998, J. Comput. Syst. Sci..
[30] V. Koltchinskii. Asymptotics of Spectral Projections of Some Random Matrices Approximating Integral Operators , 1998 .
[31] P. Massart,et al. Risk bounds for model selection via penalization , 1999 .
[32] B. Carl,et al. Metric Entropy of Convex Hulls in Banach Spaces , 1999 .
[33] R. Dudley,et al. Uniform Central Limit Theorems: Notation Index , 2014 .
[34] S. Boucheron,et al. A sharp concentration inequality with applications , 1999, Random Struct. Algorithms.
[35] V. Koltchinskii,et al. Rademacher Processes and Bounding the Risk of Function Learning , 2004, math/0405338.
[36] P. Massart,et al. About the constants in Talagrand's concentration inequalities for empirical processes , 2000 .
[37] V. Koltchinskii,et al. Random matrix approximation of spectra of integral operators , 2000 .
[38] S. Boucheron,et al. A sharp concentration inequality with applications , 1999, Random Struct. Algorithms.
[39] E. Berger. UNIFORM CENTRAL LIMIT THEOREMS (Cambridge Studies in Advanced Mathematics 63) By R. M. D UDLEY : 436pp., £55.00, ISBN 0-521-46102-2 (Cambridge University Press, 1999). , 2001 .
[40] M. Ledoux. The concentration of measure phenomenon , 2001 .
[41] Luc Devroye,et al. Combinatorial methods in density estimation , 2001, Springer series in statistics.
[42] Shahar Mendelson,et al. On the Size of Convex Hulls of Small Sets , 2002, J. Mach. Learn. Res..
[43] Felipe Cucker,et al. On the mathematical foundations of learning , 2001 .
[44] Bernhard Schölkopf,et al. Learning with kernels , 2001 .
[45] Fuchang Gao. Metric entropy of convex hulls , 2001 .
[46] Shahar Mendelson,et al. Rademacher averages and phase transitions in Glivenko-Cantelli classes , 2002, IEEE Trans. Inf. Theory.
[47] Ding-Xuan Zhou,et al. The covering number in learning theory , 2002, J. Complex..
[48] Dmitry Panchenko,et al. Some Local Measures of Complexity of Convex Hulls and Generalization Bounds , 2002, COLT.
[49] Shahar Mendelson,et al. Geometric Parameters of Kernel Machines , 2002, COLT.
[50] S. Mendelson,et al. Entropy and the combinatorial dimension , 2002, math/0203275.
[51] Shahar Mendelson,et al. Improving the sample complexity using global data , 2002, IEEE Trans. Inf. Theory.
[52] Gábor Lugosi,et al. Pattern Classification and Learning Theory , 2002 .
[53] Shahar Mendelson,et al. A Few Notes on Statistical Learning Theory , 2002, Machine Learning Summer School.
[54] P. MassartLedoux,et al. Concentration Inequalities Using the Entropy Method , 2002 .
[55] Shahar Mendelson,et al. Learnability in Hilbert Spaces with Reproducing Kernels , 2002, J. Complex..
[56] O. Bousquet. A Bennett concentration inequality and its application to suprema of empirical processes , 2002 .
[57] Peter L. Bartlett,et al. Localized Rademacher Complexities , 2002, COLT.
[58] S. Boucheron,et al. Concentration inequalities using the entropy method , 2003 .
[59] S. Smale,et al. ESTIMATING THE APPROXIMATION ERROR IN LEARNING THEORY , 2003 .
[60] S. Mendelson,et al. Remarks on the geometry of coordinate projections in ℝn , 2003, math/0306314.
[61] Michel Talagrand,et al. Vapnik--Chervonenkis type conditions and uniform Donsker classes of functions , 2003 .
[62] Gideon Schechtman,et al. The shattering dimension of sets of linear functionals , 2004 .
[63] H. Hanche-Olsen. On the uniform convexity of L^p , 2005, math/0502021.