Crystal growth within a phase change memory cell

In spite of the prominent role played by phase change materials in information technology, a detailed understanding of the central property of such materials, namely the phase change mechanism, is still lacking mostly because of difficulties associated with experimental measurements. Here, we measure the crystal growth velocity of a phase change material at both the nanometre length and the nanosecond timescale using phase-change memory cells. The material is studied in the technologically relevant melt-quenched phase and directly in the environment in which the phase change material is going to be used in the application. We present a consistent description of the temperature dependence of the crystal growth velocity in the glass and the super-cooled liquid up to the melting temperature.

[1]  Noboru Yamada,et al.  From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. , 2011, Nature materials.

[2]  Julia M. Goodfellow,et al.  Molecular dynamics study , 1997 .

[3]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[4]  Kumar Virwani,et al.  Observation and modeling of polycrystalline grain formation in Ge2Sb2Te5 , 2012 .

[5]  S. G. Bishop,et al.  Distribution of nanoscale nuclei in the amorphous dome of a phase change random access memory , 2014 .

[6]  Kurt Binder,et al.  Supercooled Liquids and the Glass Transition , 2011 .

[7]  D. Ielmini,et al.  Modeling of Threshold-Voltage Drift in Phase-Change Memory (PCM) Devices , 2012, IEEE Transactions on Electron Devices.

[8]  M. Breitwisch,et al.  Estimation of amorphous fraction in multilevel phase change memory cells , 2009, 2009 Proceedings of the European Solid State Device Research Conference.

[9]  A. Sebastian,et al.  Drift-resilient cell-state metric for multilevel phase-change memory , 2011, 2011 International Electron Devices Meeting.

[10]  Lian Yu,et al.  Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity. , 2008, The Journal of chemical physics.

[11]  K. Goodson,et al.  The Impact of Thermal Boundary Resistance in Phase-Change Memory Devices , 2008, IEEE Electron Device Letters.

[12]  S. Elliott,et al.  Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. , 2008, Nature materials.

[13]  Behrad Gholipour,et al.  Ultra-fast calorimetry study of Ge2Sb2Te5 crystallization between dielectric layers , 2012 .

[14]  Eric Pop,et al.  Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes , 2011, Science.

[15]  M. Wuttig,et al.  Crystallization kinetics in antimony and tellurium alloys used for phase change recording , 2006 .

[16]  D. Ielmini,et al.  Logic Computation in Phase Change Materials by Threshold and Memory Switching , 2013, Advanced materials.

[17]  A. Gottlob,et al.  Monte-Carlo study , 1998 .

[18]  D. Ielmini,et al.  Analytical Modeling of Chalcogenide Crystallization for PCM Data-Retention Extrapolation , 2007, IEEE Transactions on Electron Devices.

[19]  Matthias Wuttig,et al.  Measurement of crystal growth velocity in a melt-quenched phase-change material , 2013, Nature Communications.

[20]  Matthias Wuttig,et al.  Influence of dielectric capping layers on the crystallization kinetics of Ag5In6Sb59Te30 films , 2004 .

[21]  A. Pirovano,et al.  Electronic switching in phase-change memories , 2004, IEEE Transactions on Electron Devices.

[22]  A. Pirovano,et al.  Internal Temperature Extraction in Phase-Change Memory Cells During the Reset Operation , 2012, IEEE Electron Device Letters.

[23]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.

[24]  John C. Mauro,et al.  Viscosity of glass-forming liquids , 2009, Proceedings of the National Academy of Sciences.

[25]  A. Pirovano,et al.  Threshold switching and phase transition numerical models for phase change memory simulations , 2008 .

[26]  Haralampos Pozidis,et al.  Non-resistance-based cell-state metric for phase-change memory , 2011 .

[27]  M. Wuttig,et al.  Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys , 2004 .

[28]  T Uruga,et al.  Distortion-triggered loss of long-range order in solids with bonding energy hierarchy. , 2011, Nature chemistry.

[29]  Matthias Wuttig,et al.  Threshold field of phase change memory materials measured using phase change bridge devices , 2009 .

[30]  P. Ashwin,et al.  Threshold switching via electric field induced crystallization in phase-change memory devices , 2012 .

[31]  Kurt Binder,et al.  The influence of the cooling rate on the glass transition and the glassy state in three-dimensional dense polymer melts: a Monte Carlo study , 1993 .

[32]  Behrad Gholipour,et al.  Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. , 2012, Nature materials.

[33]  D. Ielmini,et al.  Recovery and Drift Dynamics of Resistance and Threshold Voltages in Phase-Change Memories , 2007, IEEE Transactions on Electron Devices.

[34]  Shih-Hung Chen,et al.  Phase-change random access memory: A scalable technology , 2008, IBM J. Res. Dev..

[35]  Byoungil Lee,et al.  Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.

[36]  C. Wright,et al.  Beyond von‐Neumann Computing with Nanoscale Phase‐Change Memory Devices , 2013 .

[37]  D. Ielmini,et al.  Modeling of Threshold Voltage Drift in Phase Change Memory (PCM) Devices , 2012, 2012 4th IEEE International Memory Workshop.

[38]  Kumar Virwani,et al.  Voltage polarity effects in Ge2Sb2Te5-based phase change memory devices , 2011 .

[39]  S. Gray,et al.  An ab initio molecular dynamics study of S0 ketene fragmentation , 2001 .

[40]  Matthias Wuttig,et al.  Design Rules for Phase‐Change Materials in Data Storage Applications , 2011, Advanced materials.

[41]  K. Binder,et al.  Cooling rate dependence of the glass transition temperature of polymer melts: Molecular dynamics study , 2002 .

[42]  Influence of the cooling rate on the glass transition temperature and the structural properties of glassy GeS2: an ab initio molecular dynamics study , 2007, cond-mat/0703397.

[43]  D. Adler,et al.  Threshold Switching in Chalcogenide-Glass Thin Films , 1980 .

[44]  Daniele Ielmini,et al.  Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices , 2007 .

[45]  H.-S. Philip Wong,et al.  Phase Change Memory , 2010, Proceedings of the IEEE.

[46]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[47]  Bart J. Kooi,et al.  Evolution of cell resistance, threshold voltage and crystallization temperature during cycling of line-cell phase-change random access memory , 2011 .

[48]  Carl V. Thompson,et al.  On the approximation of the free energy change on crystallization , 1979 .

[49]  D. Ielmini,et al.  Reliability study of phase-change nonvolatile memories , 2004, IEEE Transactions on Device and Materials Reliability.

[50]  Matthias Wuttig,et al.  Viscosity and elastic constants of thin films of amorphous Te alloys used for optical data storage , 2003 .