Kinetic Modeling of Plant and Fungal Membrane Transport Systems

GENERAL APPROACHES TO MODELING TRANSPORT SySTEMS . . . . . . . . . . . . . . . . . 78 Carriers and Channels.. . . . ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Practical Aspects......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... . . . . . . . . . . . . . . . . . . ..... 79 KINETIC MODELS OF CARRIERS FROM THEIR ELECTRICAL PROPERTIES.. 80 Experimental Approach . . . . . . . . . . . . . . ...... . . . . . . . .. . . . . . . . . .. ... . . . . . . . . . .... . . . . . . 80 The Pseudo-Two State Model ..... . . . ..... . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Effects of Ligands: Higher-State Models . . ...... ..... . . . . . . . ... . . . . . . ... .... . . . . . . . 84 Experimental Applications . . . . . . . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . ... . . . . ... . . . . . . . . . . . ..... 85 KINETIC MODELS OF CARRIERS FROM UNIDIRECTIONAL FLUXES . . . ..... .... 91 Experimental Approach.... ....... . . . . . . ....... 91 Analytical Methods . . .. . . ......... 91 Gradient-Driven Transport: Flexibility of Ordered Binding Models . . . . . . . . .. 92 Random Binding and "Dual Isotherms" . ...... . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Experimental Applications. . . . . . . . . . . ..... ... . . . . . .. . . . . . . . ... . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 KINETIC MODELS OF IONIC CHANNELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Unitary Currents ..... . . . .... . . . . . . . . . . . . . . . ...... . . ... . . . . . .. . . ... ........ . . . . . . . . . . . . . . . . .. . . . . . . 98 Gating . . .. . . . . . . . . . . . . . . . ..... . . .... . . . . . . . . . . . . . . . . . . .. . ..... .... . . . . . . . . . . . . .. . . . . . . 100 CONCLUDING REMARKS . . . . . . . . . .. 102

[1]  C. Slayman,et al.  Stoichiometry of H+/amino acid cotransport in Neurospora crassa revealed by current-voltage analysis. , 1983, Biochimica et biophysica acta.

[2]  P. Läuger Thermodynamic and kinetic properties of electrogenic ion pumps. , 1984, Biochimica et biophysica acta.

[3]  E. Zeiger,et al.  Red light stimulates an electrogenic proton pump in Vicia guard cell protoplasts. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[4]  C. Slayman,et al.  Metabolic modulation of stoichiometry in a proton pump. , 1980, Biochimica et biophysica acta.

[5]  H. Dau,et al.  Relationship between Photosynthesis and Plasmalemma Transport , 1987 .

[6]  R. Serrano Structure and Function of Plasma Membrane ATPase , 1989 .

[7]  C. Slayman,et al.  A potassium-proton symport in Neurospora crassa , 1986, The Journal of general physiology.

[8]  C. Slayman,et al.  Kinetics and pH-dependence of glycine-proton symport in Saccharomyces cerevisiae. , 1984, Biochimica et biophysica acta.

[9]  A. Borstlap The use of model‐fitting in the interpretation of ‘dual’ uptake isotherms , 1983 .

[10]  M. Höfer,et al.  Analysis of the H+/sugar symport in yeast under conditions of depolarized plasma membrane , 1989, Journal of bioenergetics and biomembranes.

[11]  N. A. Walker,et al.  Chloride Transport in CharaI. KINETICS AND CURRENT-VOLTAGE CURVES FOR A PROBABLE PROTON SYMPORT , 1981 .

[12]  D. Gadsby,et al.  Voltage dependence of Na translocation by the Na/K pump , 1986, Nature.

[13]  Edward Moczydlowski,et al.  Single-Channel Enzymology , 1986 .

[14]  E. L. King,et al.  A Schematic Method of Deriving the Rate Laws for Enzyme-Catalyzed Reactions , 1956 .

[15]  H. Apell,et al.  Transient behaviour of the Na+/K+-pump: microscopic analysis of nonstationary ion-translocation. , 1988, Biochimica et biophysica acta.

[16]  D. Sanders Physiological Control of Chloride Transport in Chara corallina: II. THE ROLE OF CHLORIDE AS A VACUOLAR OSMOTICUM. , 1981, Plant Physiology.

[17]  W. Cram Chloride Fluxes in Cells of the Isolated Root Cortex of Zea Mays , 1973 .

[18]  R. Hedrich The Physiology of ION Channels and Electrogenic Pumps in Higher Plants , 1989 .

[19]  K. Schumaker,et al.  A Ca/H Antiport System Driven by the Proton Electrochemical Gradient of a Tonoplast H-ATPase from Oat Roots. , 1985, Plant physiology.

[20]  A. Glass Regulation of Ion Transport , 1983 .

[21]  N. A. Walker,et al.  Potassium Transport Across the Membranes of Chara I. THE RELATIONSHIP BETWEEN RADIOACTIVE TRACER INFLUX AND ELECTRICAL CONDUCTANCE , 1987 .

[22]  P. Läuger Ion transport through pores: a rate-theory analysis. , 1973, Biochimica et biophysica acta.

[23]  D. Gadsby,et al.  Steady-state current-voltage relationship of the Na/K pump in guinea pig ventricular myocytes , 1989, The Journal of general physiology.

[24]  M. S. Blackman,et al.  Amino acid transport in suspension-cultured plant cells. IV. Biphasic saturable uptake kinetics of L-leucine in isolates from six Nicotiana tabacum plants , 1981 .

[25]  K. Vanselow,et al.  Further Evidence for the Relationship between Light-Induced Changes of Plasmalemma Transport and Transthylakoid Proton Uptake , 1989 .

[26]  G. Stark,et al.  Kinetics of carrier-mediated ion transport across lipid bilayer membranes. , 1970, Biochimica et biophysica acta.