A sub-pixel stereo matching algorithm and its applications in fabric imaging

In this paper, we describe a sub-pixel stereo matching algorithm where disparities are iteratively refined within a regularization framework. We choose normalized cross-correlation as the matching metric, and perform disparity refinement based on correlation gradients, which is distinguished from intensity gradient-based methods. We propose a discontinuity-preserving regularization technique which utilizes local coherence in the disparity space image, instead of estimating discontinuities in the intensity images. A concise numerical solution is derived by parameterizing the disparity space with dense bicubic B-splines. Experimental results show that the proposed algorithm performs better than correlation fitting methods without regularization. The algorithm has been implemented for applications in fabric imaging. We have shown its potentials in wrinkle evaluation, drape measurement, and pilling assessment.

[1]  Bugao Xu,et al.  Fabric wrinkle evaluation using laser triangulation and neural network classifier , 1999 .

[2]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[3]  Vladimir Kolmogorov,et al.  Computing visual correspondence with occlusions using graph cuts , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[4]  Szymon Rusinkiewicz,et al.  Improved sub-pixel stereo correspondences through symmetric refinement , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[5]  Chris Turner,et al.  Objective Evaluation of Durable Press Treatments and Fabric Smoothness Ratings , 2005 .

[6]  Olivier D. Faugeras,et al.  Level Set Methods and the Stereo Problem , 1997, Scale-Space.

[7]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[8]  Bugao Xu,et al.  Evaluating Fabric Smoothness Appearance with a Laser Profilometer , 1998 .

[9]  Tae Jin Kang,et al.  Objective Evaluation of Fabric Pilling Using Stereovision , 2004 .

[10]  J. Westerweel Digital particle image velocimetry: theory and application , 1993 .

[11]  Darius Burschka,et al.  Advances in Computational Stereo , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  O. Faugeras,et al.  Variational principles, surface evolution, PDE's, level set methods and the stereo problem , 1998, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[14]  Wilfried Brauer,et al.  Intensity- and Gradient-Based Stereo Matching Using Hierarchical Gaussian Basis Functions , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Lorenzo J. Tardón,et al.  Markov random fields and the disparity gradient constraint applied to stereo correspondence , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[16]  Sébastien Roy,et al.  Stereo Without Epipolar Lines: A Maximum-Flow Formulation , 1999, International Journal of Computer Vision.

[17]  Les A. Piegl,et al.  The NURBS book (2nd ed.) , 1997 .

[18]  Tae Jin Kang,et al.  A New Objective Method of Measuring Fabric Wrinkles Using a 3-D Projecting Grid Technique , 1999 .

[19]  Minglun Gong,et al.  Genetic-Based Stereo Algorithm and Disparity Map Evaluation , 2002, International Journal of Computer Vision.

[20]  Alan L. Yuille,et al.  Occlusions and binocular stereo , 1992, International Journal of Computer Vision.

[21]  Richard Szeliski,et al.  Symmetric Sub-Pixel Stereo Matching , 2002, ECCV.

[22]  Jinlian Hu,et al.  Measuring and Modeling 3D Wrinkles in Fabrics , 2002 .

[23]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[25]  Les A. Piegl,et al.  On NURBS: A Survey , 2004 .

[26]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Changming Sun,et al.  Fast Stereo Matching Using Rectangular Subregioning and 3D Maximum-Surface Techniques , 2002, International Journal of Computer Vision.

[28]  Jinlian Hu,et al.  Objective Evaluation of Fabric Pilling Using Image Analysis Techniques , 2002 .

[29]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[30]  Richard Szeliski,et al.  Spline-Based Image Registration , 1997, International Journal of Computer Vision.

[31]  Olivier D. Faugeras,et al.  Variational principles, surface evolution, PDEs, level set methods, and the stereo problem , 1998, IEEE Trans. Image Process..

[32]  Bugao Xu,et al.  Instrumental Evaluation of Fabric Pilling , 1997 .

[33]  Michael Unser,et al.  Fast B-spline Transforms for Continuous Image Representation and Interpolation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Jian Sun,et al.  Symmetric stereo matching for occlusion handling , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[35]  Charles V. Stewart,et al.  Robust Computer Vision: An Interdisciplinary Challenge , 2000, Comput. Vis. Image Underst..

[36]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[37]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Masatoshi Okutomi,et al.  Sub-Pixel Estimation Error Cancellation on Area-Based Matching , 2005, International Journal of Computer Vision.