Self-Sensing Ionic Polymer Actuators: A Review

Ionic electromechanically active polymers (IEAP) are laminar composites that can be considered attractive candidates for soft actuators. Their outstanding properties such as low operating voltage, easy miniaturization, and noiseless operation are, however, marred by issues related to the repeatability in the production and operation of these materials. Implementing closed-loop control for IEAP actuators is a viable option for overcoming these issues. Since IEAP laminates also behave as mechanoelectrical sensors, it is advantageous to combine the actuating and sensing functionalities of a single device to create a so-called self-sensing actuator. This review article systematizes the state of the art in producing self-sensing ionic polymer actuators. The IEAPs discussed in this paper are conducting (or conjugated) polymers actuators (CPA), ionic polymer-metal composite (IPMC), and carbonaceous polymer laminates.

[1]  G. Anbarjafari,et al.  In situ scanning electron microscopy study of strains of ionic electroactive polymer actuators , 2016 .

[2]  Kinji Asaka,et al.  Electroactive Shape-Fixing of Bucky-Gel Actuators , 2015, IEEE/ASME Transactions on Mechatronics.

[3]  T. F. Otero,et al.  Physical and chemical awareness from sensing polymeric artificial muscles. Experiments and modeling , 2015 .

[4]  Philippe Lutz,et al.  Simultaneous Displacement/Force Self-Sensing in Piezoelectric Actuators and Applications to Robust Control , 2015, IEEE/ASME Transactions on Mechatronics.

[5]  Urmas Johanson,et al.  Ionic and Capacitive Artificial Muscle for Biomimetic Soft Robotics , 2015 .

[6]  Wei-Lun Huang,et al.  A self-strain feedback tuning-fork-shaped ionic polymer metal composite clamping actuator with soft matter elasticity-detecting capability for biomedical applications. , 2014, Materials science & engineering. C, Materials for biological applications.

[7]  Gursel Alici,et al.  Intelligent Control of Electroactive Polymer Actuators Based on Fuzzy and Neurofuzzy Methodologies , 2014, IEEE/ASME Transactions on Mechatronics.

[8]  G. Wallace,et al.  Ionic electroactive polymer artificial muscles in space applications , 2014, Scientific Reports.

[9]  I. Must,et al.  Ionic liquid-based actuators working in air: The effect of ambient humidity , 2014 .

[10]  Karl Kruusamäe,et al.  Lifetime measurements of ionic electroactive polymer actuators , 2014 .

[11]  Kinji Asaka,et al.  Integration of CNT-based actuators for bio-medical applications — Example printed circuit board CNT actuator pipette , 2014, 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[12]  Kyoung Kwan Ahn,et al.  Analysis and experiment on a self-sensing ionic polymer–metal composite actuator , 2014 .

[13]  Kinji Asaka,et al.  Impact of viscoelastic properties on bucky-gel actuator performance , 2014 .

[14]  D. Q. Truong,et al.  Modeling of an ionic polymer metal composite actuator based on an extended Kalman filter trained neural network , 2014 .

[15]  T. Otero,et al.  Mechanical awareness from sensing artificial muscles: Experiments and modeling , 2014 .

[16]  Kinji Asaka,et al.  Comparative experimental investigation on the actuation mechanisms of ionic polymer-metal composites with different backbones and water contents , 2014 .

[17]  Salvatore Graziani,et al.  An investigation of the structure–property relationships in ionic polymer polymer composites (IP2Cs) manufactured by polymerization in situ of PEDOT/PSS on Nafion®117 , 2014 .

[18]  Lirong Kong,et al.  Carbon Nanotube and Graphene‐based Bioinspired Electrochemical Actuators , 2014, Advanced materials.

[19]  Kyoung Kwan Ahn,et al.  Modeling and control of a self-sensing polymer metal composite actuator , 2014 .

[20]  Kinji Asaka,et al.  Mechanical behaviour of bending bucky-gel actuators and its representation , 2014 .

[21]  Alvo Aabloo,et al.  Inversion-based control of ionic polymer–metal composite actuators with nanoporous carbon-based electrodes , 2014 .

[22]  S. Ito,et al.  Self-Sensing Control of Nafion-Based Ionic Polymer-Metal Composite (IPMC) Actuator in the Extremely Low Humidity Environment , 2013 .

[23]  I. Must,et al.  Mechanoelectrical impedance of a carbide-derived carbon-based laminate motion sensor at large bending deflections , 2013 .

[24]  A. Aabloo,et al.  Nanocarbon based ionic actuators—a review , 2013 .

[25]  Samuel Rosset,et al.  Self-sensing dielectric elastomer actuators in closed-loop operation , 2013 .

[26]  K. Asaka,et al.  Ionic electroactive polymer actuators based on nano‐carbon electrodes , 2013 .

[27]  K. Asaka,et al.  Multiphysics of ionic polymer–metal composite actuator , 2013 .

[28]  Matteo Aureli,et al.  Nonlinear sensing of ionic polymer metal composites , 2013 .

[29]  Kinji Asaka,et al.  Recent advances in ionic polymer–metal composite actuators and their modeling and applications , 2013 .

[30]  Yoonyoung Jin,et al.  Application of bucky gel in fabrication of a low-voltage rapid microvalve for flow regulation. , 2013, ACS applied materials & interfaces.

[31]  Urmas Johanson,et al.  Charging a supercapacitor-like laminate with ambient moisture: from a humidity sensor to an energy harvester. , 2013, Physical chemistry chemical physics : PCCP.

[32]  Todd A. Gisby,et al.  Self sensing feedback for dielectric elastomer actuators , 2013 .

[33]  Karl Kruusamäe,et al.  Self-sensing ionic electromechanically active actuator with patterned carbon electrodes , 2013, Smart Structures.

[34]  L. Weiland,et al.  Experimental investigation of the streaming potential hypothesis for ionic polymer transducers in sensing , 2013 .

[35]  Jonathan Rossiter,et al.  Swimming like algae: biomimetic soft artificial cilia , 2013, Journal of The Royal Society Interface.

[36]  T. F. Otero,et al.  Biomimetic electrochemistry from conducting polymers. A review: Artificial muscles, smart membranes, smart drug delivery and computer/neuron interfaces , 2012 .

[37]  Alvo Aabloo,et al.  Mechanical interpretation of back-relaxation of ionic electroactive polymer actuators , 2012 .

[38]  T. Otero,et al.  Biomimetic dual sensing-actuators: theoretical description. Sensing electrolyte concentration and driving current. , 2012, The journal of physical chemistry. B.

[39]  Amir Firouzeh,et al.  An IPMC-made deformable-ring-like robot , 2012 .

[40]  Jose G Martinez,et al.  Biomimetic dual sensing-actuators based on conducting polymers. Galvanostatic theoretical model for actuators sensing temperature. , 2012, The journal of physical chemistry. B.

[41]  K. K. Leang,et al.  Integrated Sensing for IPMC Actuators Using Strain Gages for Underwater Applications , 2012, IEEE/ASME Transactions on Mechatronics.

[42]  E. Woldesenbet,et al.  Mechanical characterization of bucky gel morphing nanocomposite for actuating/sensing applications , 2012 .

[43]  Ryojun Ikeura,et al.  Multi-Input Multi-Output Integrated Ionic Polymer-Metal Composite for Energy Controls , 2012, Micromachines.

[44]  Karl Kruusamäe,et al.  Electrical Model of a Carbon-Polymer Composite (CPC) Collision Detector , 2012, Sensors.

[45]  I. Must,et al.  A carbide-derived carbon laminate used as a mechanoelectrical sensor , 2012 .

[46]  T. Someya,et al.  A 4 V Operation, Flexible Braille Display Using Organic Transistors, Carbon Nanotube Actuators, and Organic Static Random‐Access Memory , 2011 .

[47]  H. Tamagawa,et al.  Bending control of Nafion-based electroactive polymer actuator coated with multi-walled carbon nanotubes , 2011 .

[48]  Kam K. Leang,et al.  A Twistable Ionic Polymer-Metal Composite Artificial Muscle for Marine Applications , 2011 .

[49]  Karl Kruusamäe,et al.  Self-sensing properties of carbon-polymer composite (CPC) actuators , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[50]  Andres Punning,et al.  Variable-focal lens using electroactive polymer actuator , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[51]  Jonathan Rossiter,et al.  Electrostatic and thermal segmentation of multi-segment IPMC sensor-actuators , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[52]  Il-Kwon Oh,et al.  A helical ionic polymer–metal composite actuator for radius control of biomedical active stents , 2011 .

[53]  Che-Min Lin,et al.  A Self-Sensing Microgripper Module With Wide Handling Ranges , 2011, IEEE/ASME Transactions on Mechatronics.

[54]  D. Q. Truong,et al.  Design and verification of a non-linear black-box model for ionic polymer metal composite actuators , 2011 .

[55]  Masaki Yamakita,et al.  Integrated actuator-sensor system of bucky gel device , 2010, Proceedings of SICE Annual Conference 2010.

[56]  Kimiya Ikushima,et al.  PEDOT/PSS bending actuators for autofocus micro lens applications , 2010 .

[57]  Kyoung Kwan Ahn,et al.  Identification of a nonlinear black-box model for a self-sensing polymer metal composite actuator , 2010 .

[58]  Dong Wang,et al.  Ion transport and storage of ionic liquids in ionic polymer conductor network composites , 2010 .

[59]  Luigi Fortuna,et al.  Static and Dynamic Characterization of the Temperature and Humidity Influence on IPMC Actuators , 2010, IEEE Transactions on Instrumentation and Measurement.

[60]  Luigi Fortuna,et al.  Experiments with self-sensing IPMC actuating device , 2010, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[61]  Ming-Shaung Ju,et al.  Development of sensing/actuating ionic polymer–metal composite (IPMC) for active guide-wire system , 2010 .

[62]  Alvo Aabloo,et al.  Ionic polymer–metal composite mechanoelectrical transduction: review and perspectives , 2010 .

[63]  Urmas Johanson,et al.  Nanoporous Carbide-Derived Carbon Material-Based Linear Actuators , 2009, Materials.

[64]  L. Fortuna,et al.  Electromechanical model for a self-sensing ionic polymer–metal composite actuating device with patterned surface electrodes , 2009 .

[65]  Kang-Ho Park,et al.  Electroactive Polymer Actuator for Lens‐Drive Unit in Auto‐Focus Compact Camera Module , 2009 .

[66]  Gordon G. Wallace,et al.  Towards fully optimized conducting polymer bending sensors: the effect of geometry , 2009 .

[67]  Christopher D. Cook,et al.  Towards the position control of conducting polymer trilayer bending actuators with integrated feedback sensor , 2009, 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[68]  Sung-Weon Yeom,et al.  A biomimetic jellyfish robot based on ionic polymer metal composite actuators , 2009 .

[69]  Kumar Krishen,et al.  Space applications for ionic polymer-metal composite sensors, actuators, and artificial muscles , 2009 .

[70]  Karl Kruusamäe,et al.  Dynamical variation of the impedances of IPMC , 2009, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[71]  Hyok Chon Kwon,et al.  A Self-Sensing Method for IPMC Actuator , 2008 .

[72]  S. Graziani,et al.  A Tactile Sensor for Biomedical Applications Based on IPMCs , 2008, IEEE Sensors Journal.

[73]  Xiaobo Tan,et al.  Integrated IPMC/PVDF sensory actuator and its validation in feedback control , 2008 .

[74]  H. Choi,et al.  A self-sensing dielectric elastomer actuator , 2008 .

[75]  G. Wallace,et al.  Response Characterization of Electroactive Polymers as Mechanical Sensors , 2008, IEEE/ASME Transactions on Mechatronics.

[76]  I. Oh,et al.  Fabrication and actuation of ionic polymer metal composites patterned by combining electroplating with electroless plating , 2008 .

[77]  Kinji Asaka,et al.  Integrated Design of an Ionic Polymer–Metal Composite Actuator/Sensor , 2008, Adv. Robotics.

[78]  Zhi-Wei Luo,et al.  Sensor Property of a Novel EAP Device with Ionic-liquid-based Bucky Gel , 2007, 2007 IEEE Sensors.

[79]  Gursel Alici,et al.  Soft Mechanical Sensors Through Reverse Actuation in Polypyrrole , 2007 .

[80]  Hartmut Janocha,et al.  Adaptronics and Smart Structures: Basics, Materials, Design, and Applications , 2007 .

[81]  Maarja Kruusmaa,et al.  A self-sensing ion conducting polymer metal composite (IPMC) actuator , 2007 .

[82]  M. Yamakita,et al.  Integrated Actuator-Sensor System on Patterned IPMC Film : Consideration of Electoric Interference , 2007, 2007 IEEE International Conference on Mechatronics.

[83]  T. Someya,et al.  Sheet-Type Braille Displays by Integrating Organic Field-Effect Transistors and Polymeric Actuators , 2007, IEEE Transactions on Electron Devices.

[84]  N. Xi,et al.  Integrated sensing for ionic polymer–metal composite actuators using PVDF thin films , 2007 .

[85]  A. Punning,et al.  Surface resistance experiments with IPMC sensors and actuators , 2007 .

[86]  D. Leo,et al.  Correlation of capacitance and actuation in ionomeric polymer transducers , 2005 .

[87]  Barbar J. Akle,et al.  Electromechanical transduction in multilayer ionic transducers , 2004 .

[88]  Satoshi Tadokoro,et al.  Development of velocity sensor using ionic polymer-metal composites , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[89]  Yoseph Bar-Cohen,et al.  Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Second Edition , 2004 .

[90]  T F Otero,et al.  Artificial muscle: movement and position control. , 2004, Chemical communications.

[91]  Barbar J. Akle,et al.  Multilayer ionic polymer transducer , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[92]  Martin Levesley,et al.  Control of ionic polymer metal composites , 2003 .

[93]  E. Smela Conjugated Polymer Actuators for Biomedical Applications , 2003 .

[94]  María Teresa Cortés,et al.  Artificial Muscles with Tactile Sensitivity , 2003 .

[95]  John R. Reynolds,et al.  In Situ Electrochemical Strain Gage Monitoring of Actuation in Conducting Polymers , 2002 .

[96]  Ingemar Lundström,et al.  The Cell Clinic: Closable Microvials for Single Cell Studies , 2002 .

[97]  Nesbitt W. Hagood,et al.  Simultaneous Piezoelectric Sensing/Actuation: Analysis And Application To Controlled Structures , 1994 .

[98]  Jon R. Pratt,et al.  Development and Analysis of a Self-Sensing Magnetostrictive Actuator Design , 1993, Smart Structures.

[99]  Ephrahim Garcia,et al.  A Self-Sensing Piezoelectric Actuator for Collocated Control , 1992 .

[100]  Aamir Shabbir,et al.  Experiments and Modeling , 1991 .

[101]  Sia Nemat-Nassera,et al.  Micromechanics of actuation of ionic polymer-metal composites , 2014 .

[102]  Jonathan Rossiter,et al.  Kirigami artificial muscles with complex biologically inspired morphologies , 2012 .

[103]  Cédric Plesse,et al.  Actuation and Sensing properties of Electroactive Polymer Whiskers , 2011, FET.

[104]  Xiaobo Tan,et al.  FEEDBACK CONTROL OF A COUPLED IPMC (IONIC POLYMER-METAL COMPOSITE) SENSOR- ACTUATOR , 2009 .

[105]  S. Graziani,et al.  A sensor-actuator integrated system based on IPMCs [ionic polymer metal composites] , 2004, Proceedings of IEEE Sensors, 2004..

[106]  Y. Cohen Electroactive Polymer (EAP) Actuators as Artificial Muscles - Reality , 2001 .