Structure-oriented singular value decomposition for random noise attenuation of seismic data

Singular value decomposition (SVD) can be used both globally and locally to remove random noise in order to improve the signal-to-noise ratio (SNR) of seismic data. However, it can only be applied to seismic data with simple structure such that there is only one dip component in each processing window. We introduce a novel denoising approach that utilizes a structure-oriented SVD, and this approach can enhance seismic reflections with continuous slopes. We create a third dimension for a 2D seismic profile by using the plane-wave prediction operator to predict each trace from its neighbour traces and apply SVD along this dimension. The added dimension is equivalent to flattening the seismic reflections within a neighbouring window. The third dimension is then averaged to decrease the dimension. We use two synthetic examples with different complexities and one field data example to demonstrate the performance of the proposed structure-oriented SVD. Compared with global and local SVDs, and f–x deconvolution, the structure-oriented SVD can obtain much clearer reflections and preserve more useful energy.

[1]  Yanghua Wang,et al.  Random noise attenuation using forward-backward linear prediction , 1999 .

[2]  Jingwei Hu,et al.  Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization , 2014 .

[3]  Sergey Fomel,et al.  Predictive painting of 3D seismic volumes , 2010 .

[4]  L. Canales Random Noise Reduction , 1984 .

[5]  James A. Cadzow,et al.  Signal enhancement-a composite property mapping algorithm , 1988, IEEE Trans. Acoust. Speech Signal Process..

[6]  R. Vautard,et al.  Singular-spectrum analysis: a toolkit for short, noisy chaotic signals , 1992 .

[7]  Tad J. Ulrych,et al.  Application of singular value decomposition to vertical seismic profiling , 1988 .

[8]  Yangkang Chen,et al.  Deblending using a space-varying median filter , 2014 .

[9]  J. Claerbout,et al.  Flattening without picking , 2006 .

[10]  Yangkang Chen,et al.  Application of spectral decomposition using regularized non-stationary autoregression to random noise attenuation , 2015 .

[11]  Yangkang Chen,et al.  Random noise attenuation by f-x empirical mode decomposition predictive filtering , 2014 .

[12]  Yangkang Chen,et al.  Random noise attenuation by a selective hybrid approach using f-x empirical mode decomposition , 2014, SEG Technical Program Expanded Abstracts 2014.

[13]  Yang Liu,et al.  Seislet transform and seislet frame , 2010 .

[14]  M. Sacchi,et al.  A Randomized SVD For Multichannel Singular Spectrum Analysis (MSSA) Noise Attenuation , 2010 .

[15]  Jiang Yuan,et al.  Deblending using normal moveout and median filtering in common-midpoint gathers , 2014 .

[16]  Yanghua Wang Seismic trace interpolation in the f‐x‐y domain , 2002 .

[17]  I. F. Jones,et al.  SIGNAL‐TO‐NOISE RATIO ENHANCEMENT IN MULTICHANNEL SEISMIC DATA VIA THE KARHUNEN‐LOÉVE TRANSFORM* , 1987 .

[18]  Yangkang Chen,et al.  Random Noise Attenuation Using Local Signal and Noise Orthogonalization , 2015 .

[19]  Sergey Fomel,et al.  Applications of plane-wave destruction filters , 2002 .

[20]  Jingye Li,et al.  Seismic noise attenuation using nonstationary polynomial fitting , 2011 .

[21]  Sergey Fomel,et al.  Seismic data decomposition into spectral components using regularized nonstationary autoregression , 2012 .

[22]  P. E. Harris,et al.  Improving the performance of f-x prediction filtering at low signal-to-noise ratios , 1997 .

[23]  Sergey Fomel Seismic Data Decomposition Into Spectral Components Using Regularized Nonstationary Autoregression , 2012 .

[24]  R. Kumaresan,et al.  Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood , 1982, Proceedings of the IEEE.

[25]  M. Sacchi,et al.  Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis , 2011 .

[26]  M. Baan,et al.  Local singular value decomposition for signal enhancement of seismic data , 2007 .

[27]  R. Neelamani,et al.  Coherent and random noise attenuation using the curvelet transform , 2008 .

[28]  Guochang Liu,et al.  Nonlinear structure‐enhancing filtering using plane‐wave prediction * , 2010 .

[29]  Yangkang Chen,et al.  Random noise attenuation using local signal-and-noise orthogonalization , 2015 .

[30]  Jean-Louis Lacoume,et al.  Modified singular value decomposition by means of independent component analysis , 2004, Signal Process..

[31]  Yike Liu,et al.  Noise reduction by vector median filtering , 2013 .

[32]  J. Claerbout,et al.  Lateral prediction for noise attenuation by t-x and f-x techniques , 1995 .

[33]  Milton J. Porsani,et al.  Ground-roll Attenuation Based On SVD Filtering , 2009 .

[34]  Mauricio D. Sacchi,et al.  Denoising seismic data using the nonlocal means algorithm , 2012 .