On realistic terrains

We study worst-case complexities of visibility and distance structures on terrains under realistic assumptions on edge length ratios and the angles of the triangles. We show that the visibility map of a point for a realistic terrain with <i>n</i> triangles has complexity Θ(<i>n</i>√<i>n</i>). We also prove that the shortest path between two points <i>p</i> and <i>q</i> on a realistic terrain passes through Θ(√<i>n</i>) triangles, and that the bisector between <i>p</i> and <i>q</i> has complexity <i>O</i>(<i>n √n</i>). We use these results to show that the shortest path map for any point on a realistic terrain has complexity Θ(<i>n√n</i>), and that the Voronoi diagram for any set of <i>m</i> points on a realistic terrain has complexity Ω(<i>n + m√n</i>) and <i>O</i>(<i>(n+m)√n</i>). Our results immediately imply more efficient algorithms for computing the various structures on realistic terrains.

[1]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[2]  Micha Sharir,et al.  On the union of κ-round objects , 2004, SCG '04.

[3]  Alon Efrat,et al.  The complexity of the union of (α, β)-covered objects , 1999, SCG '99.

[4]  Sanjiv Kapoor,et al.  Efficient computation of geodesic shortest paths , 1999, STOC '99.

[5]  Mark de Berg,et al.  Models and Motion Planning , 1998, SWAT.

[6]  Kurt Mehlhorn,et al.  Approximate motion planning and the complexity of the boundary of the union of simple geometric figures , 2005, Algorithmica.

[7]  Micha Sharir,et al.  Fat Triangles Determine Linearly Many Holes , 1994, SIAM J. Comput..

[8]  Mark de Berg Vertical ray shooting for fat objects , 2005, Symposium on Computational Geometry.

[9]  Jeff Erickson,et al.  Local polyhedra and geometric graphs , 2005, Comput. Geom..

[10]  Mark de Berg,et al.  Linear Size Binary Space Partitions for Uncluttered Scenes , 2000, Algorithmica.

[11]  Joseph S. B. Mitchell,et al.  Query-sensitive ray shooting , 1994, SCG '94.

[12]  Alon Efrat The Complexity of the Union of (alpha, beta)-Covered Objects , 2005, SIAM J. Comput..

[13]  Mark H. Overmars,et al.  Range Searching and Point Location among Fat Objects , 1994, J. Algorithms.

[14]  Marc J. van Kreveld On fat partitioning, fat covering and the union size of polygons , 1998, Comput. Geom..

[15]  Michael McKenna Worst-case optimal hidden-surface removal , 1987, TOGS.

[16]  Otfried Cheong,et al.  Range Searching in Low-Density Environments , 1996, Inf. Process. Lett..

[17]  Micha Sharir,et al.  On the Union of κ-Round Objects in Three and Four Dimensions , 2004, Discret. Comput. Geom..

[18]  Marc J. van Kreveld,et al.  On realistic terrains , 2008, Comput. Geom..

[19]  Micha Sharir,et al.  Efficient Hidden Surface Removal for Objects with Small Union Size , 1992, Comput. Geom..

[20]  Mark de Berg,et al.  Motion Planning in Environments with Low Obstacle Density , 1998, Discret. Comput. Geom..

[21]  Boris Aronov,et al.  Nonoverlap of the star unfolding , 1992, Discret. Comput. Geom..

[22]  Yijie Han,et al.  Shortest paths on a polyhedron , 1990, SCG '90.

[23]  Mark de Berg,et al.  Realistic input models for geometric algorithms , 1997, SCG '97.