On the Fréchet Derivative in Elastic Obstacle Scattering
暂无分享,去创建一个
[1] Rainer Kress,et al. On the Far Field in Obstacle Scattering , 1999, SIAM J. Appl. Math..
[2] Carlos J. S. Alves,et al. On the far‐field operator in elastic obstacle scattering , 2002 .
[3] Antoine Henrot,et al. Variation et optimisation de formes , 2005 .
[4] J. Nédélec. Acoustic and electromagnetic equations , 2001 .
[5] Thorsten Hohage,et al. ITERATIVE REGULARIZATION METHODS IN INVERSE SCATTERING , 1999 .
[6] W. S. Venturini. Boundary Integral Equations , 1983 .
[7] H. Gutfreund,et al. Potential methods in the theory of elasticity , 1965 .
[8] M. Costabel,et al. Integral equations for transmission problems in linear elasticity , 1990 .
[9] Martin Costabel,et al. Shape Derivatives of Boundary Integral Operators in Electromagnetic Scattering. Part I: Shape Differentiability of Pseudo-homogeneous Boundary Integral Operators , 2010 .
[10] F. Hettlich. Frechet derivatives in inverse obstacle scattering , 1995 .
[11] J. Nédélec. Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .
[12] Rainer Kress,et al. Identification of sound-soft 3D obstacles from phaseless data , 2010 .
[13] A. Kirsch. The domain derivative and two applications in inverse scattering theory , 1993 .
[14] M. Costabel,et al. Shape Derivatives of Boundary Integral Operators in Electromagnetic Scattering. Part II: Application to Scattering by a Homogeneous Dielectric Obstacle , 2010, 1002.1541.
[15] R. Potthast,et al. Fréchet differentiability of the solution to the acoustic Neumann scattering problem with respect to the domain , 1996 .
[16] E. Sternberg,et al. Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity , 1980 .
[17] R. Potthast. Domain Derivatives in Electromagnetic Scattering , 1996 .
[18] Olha Ivanyshyn,et al. Nonlinear integral equation methods for the reconstruction of an acoustically sound-soft obstacle , 2007 .
[19] Houssem Haddar,et al. On the Fréchet Derivative for Obstacle Scattering with an Impedance Boundary Condition , 2004, SIAM J. Appl. Math..
[20] R. Kress,et al. Nonlinear integral equations and the iterative solution for an inverse boundary value problem , 2005 .
[21] A. Charalambopoulos. On the Frechet differentiability of boundary integral operators in the inverse elastic scattering problem , 1995 .
[22] C. B. Morrey. Multiple Integrals in the Calculus of Variations , 1966 .
[23] Helmut Harbrecht,et al. Fast Methods for Three-dimensional Inverse Obstacle Scattering Problems , 2007 .
[24] Roland Potthast,et al. Frechet differentiability of boundary integral operators in inverse acoustic scattering , 1994 .
[25] R. Kress,et al. Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .
[26] Frédérique Le Louër. Optimisation de forme d'antennes lentilles intégrées aux ondes millimétriques , 2009 .