On the Fréchet Derivative in Elastic Obstacle Scattering

In this paper, we investigate the existence and characterizations of the Frechet derivative of solutions to time-harmonic elastic scattering problems with respect to the boundary of the obstacle. Our analysis is based on a technique---the factorization of the difference of the far-field pattern for two different scatterers---introduced by Kress and Paivarinta [SIAM J. Appl. Math., 59 (1999), pp. 1413--1426] to establish Frechet differentiability in acoustic scattering. For the Dirichlet boundary condition an alternative proof of a differentiability result due to Charalambopoulos is provided, and new results are proven for the Neumann and impedance exterior boundary value problems.

[1]  Rainer Kress,et al.  On the Far Field in Obstacle Scattering , 1999, SIAM J. Appl. Math..

[2]  Carlos J. S. Alves,et al.  On the far‐field operator in elastic obstacle scattering , 2002 .

[3]  Antoine Henrot,et al.  Variation et optimisation de formes , 2005 .

[4]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[5]  Thorsten Hohage,et al.  ITERATIVE REGULARIZATION METHODS IN INVERSE SCATTERING , 1999 .

[6]  W. S. Venturini Boundary Integral Equations , 1983 .

[7]  H. Gutfreund,et al.  Potential methods in the theory of elasticity , 1965 .

[8]  M. Costabel,et al.  Integral equations for transmission problems in linear elasticity , 1990 .

[9]  Martin Costabel,et al.  Shape Derivatives of Boundary Integral Operators in Electromagnetic Scattering. Part I: Shape Differentiability of Pseudo-homogeneous Boundary Integral Operators , 2010 .

[10]  F. Hettlich Frechet derivatives in inverse obstacle scattering , 1995 .

[11]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[12]  Rainer Kress,et al.  Identification of sound-soft 3D obstacles from phaseless data , 2010 .

[13]  A. Kirsch The domain derivative and two applications in inverse scattering theory , 1993 .

[14]  M. Costabel,et al.  Shape Derivatives of Boundary Integral Operators in Electromagnetic Scattering. Part II: Application to Scattering by a Homogeneous Dielectric Obstacle , 2010, 1002.1541.

[15]  R. Potthast,et al.  Fréchet differentiability of the solution to the acoustic Neumann scattering problem with respect to the domain , 1996 .

[16]  E. Sternberg,et al.  Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity , 1980 .

[17]  R. Potthast Domain Derivatives in Electromagnetic Scattering , 1996 .

[18]  Olha Ivanyshyn,et al.  Nonlinear integral equation methods for the reconstruction of an acoustically sound-soft obstacle , 2007 .

[19]  Houssem Haddar,et al.  On the Fréchet Derivative for Obstacle Scattering with an Impedance Boundary Condition , 2004, SIAM J. Appl. Math..

[20]  R. Kress,et al.  Nonlinear integral equations and the iterative solution for an inverse boundary value problem , 2005 .

[21]  A. Charalambopoulos On the Frechet differentiability of boundary integral operators in the inverse elastic scattering problem , 1995 .

[22]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[23]  Helmut Harbrecht,et al.  Fast Methods for Three-dimensional Inverse Obstacle Scattering Problems , 2007 .

[24]  Roland Potthast,et al.  Frechet differentiability of boundary integral operators in inverse acoustic scattering , 1994 .

[25]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[26]  Frédérique Le Louër Optimisation de forme d'antennes lentilles intégrées aux ondes millimétriques , 2009 .