Trapping Sets of Quantum LDPC Codes

Iterative decoders for finite length quantum low-density parity-check (QLDPC) codes are attractive because their hardware complexity scales only linearly with the number of physical qubits. However, they are impacted by short cycles, detrimental graphical configurations known as trapping sets (TSs) present in a code graph as well as symmetric degeneracy of errors. These factors significantly degrade the decoder decoding probability performance and cause so-called error floor. In this paper, we establish a systematic methodology by which one can identify and classify quantum trapping sets (QTSs) according to their topological structure and decoder used. The conventional definition of a TS from classical error correction is generalized to address the syndrome decoding scenario for QLDPC codes. We show that the knowledge of QTSs can be used to design better QLDPC codes and decoders. Frame error rate improvements of two orders of magnitude in the error floor regime are demonstrated for some practical finite-length QLDPC codes without requiring any post-processing.

[1]  Pavel Panteleev,et al.  Degenerate Quantum LDPC Codes With Good Finite Length Performance , 2019, Quantum.

[2]  Simon Litsyn,et al.  Efficient Serial Message-Passing Schedules for LDPC Decoding , 2007, IEEE Transactions on Information Theory.

[3]  Earl T. Campbell,et al.  Decoding across the quantum low-density parity-check code landscape , 2020, Physical Review Research.

[4]  L. Pryadko,et al.  Fault tolerance of quantum low-density parity check codes with sublinear distance scaling , 2013 .

[5]  Bane V. Vasic,et al.  Trapping Set Analysis of Finite-Length Quantum LDPC Codes , 2021, 2021 IEEE International Symposium on Information Theory (ISIT).

[6]  Marco Baldi,et al.  On the use of ordered statistics decoders for low-density parity-check codes in space telecommand links , 2016, EURASIP J. Wirel. Commun. Netw..

[7]  Bane V. Vasic,et al.  Stochastic resonance decoding for quantum LDPC codes , 2017, 2017 IEEE International Conference on Communications (ICC).

[8]  Amir H. Banihashemi,et al.  An efficient algorithm for finding dominant trapping sets of LDPC codes , 2011, 2010 6th International Symposium on Turbo Codes & Iterative Information Processing.

[9]  Pascal O. Vontobel,et al.  Pseudocodeword-based Decoding of Quantum Stabilizer Codes , 2019, 1903.01202.

[10]  Leonid P. Pryadko,et al.  Improved quantum hypergraph-product LDPC codes , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[11]  Marc P. C. Fossorier,et al.  Quasi-Cyclic Low-Density Parity-Check Codes From Circulant Permutation Matrices , 2004, IEEE Trans. Inf. Theory.

[12]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[13]  Manabu Hagiwara,et al.  Comment on "Quasi-Cyclic Low Density Parity Check Codes From Circulant Permutation Matrices" , 2009, IEEE Trans. Inf. Theory.

[14]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[15]  Mark M. Wilde,et al.  Logical operators of quantum codes , 2009, 0903.5256.

[16]  Shashi Kiran Chilappagari,et al.  On the Construction of Structured LDPC Codes Free of Small Trapping Sets , 2012, IEEE Transactions on Information Theory.

[17]  David Declercq,et al.  A Sub-Graph Expansion-Contraction Method for Error Floor Computation , 2020, IEEE Transactions on Communications.

[18]  Thomas J. Richardson,et al.  Error Floors of LDPC Codes , 2003 .

[19]  Soon Xin Ng,et al.  Fifteen Years of Quantum LDPC Coding and Improved Decoding Strategies , 2015, IEEE Access.

[20]  Gleb Kalachev,et al.  Quantum LDPC Codes With Almost Linear Minimum Distance , 2020, IEEE Transactions on Information Theory.

[21]  L. Pryadko,et al.  Quantum Kronecker sum-product low-density parity-check codes with finite rate , 2012, 1212.6703.

[22]  Dung Viet Nguyen,et al.  An efficient exhaustive low-weight codeword search for structured LDPC codes , 2013, 2013 Information Theory and Applications Workshop (ITA).

[23]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[24]  Daniel Gottesman,et al.  Fault-tolerant quantum computation with constant overhead , 2013, Quantum Inf. Comput..

[25]  Gilles Zémor,et al.  Quantum LDPC codes with positive rate and minimum distance proportional to n½ , 2009, ISIT.

[26]  Jinhong Yuan,et al.  Reliable Quantum LDPC Codes over GF(4) , 2016, 2016 IEEE Globecom Workshops (GC Wkshps).

[27]  David Poulin,et al.  On the iterative decoding of sparse quantum codes , 2008, Quantum Inf. Comput..

[28]  David Declercq,et al.  Finite Alphabet Iterative Decoders—Part I: Decoding Beyond Belief Propagation on the Binary Symmetric Channel , 2013, IEEE Transactions on Communications.

[29]  Lajos Hanzo,et al.  Construction of Quantum LDPC Codes From Classical Row-Circulant QC-LDPCs , 2016, IEEE Communications Letters.

[30]  Shashi Kiran Chilappagari,et al.  Failures and Error Floors of Iterative Decoders , 2014 .

[31]  Shu Lin,et al.  Soft-decision decoding of linear block codes based on ordered statistics , 1994, IEEE Trans. Inf. Theory.

[32]  Gilles Zémor,et al.  Quantum Expander Codes , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[33]  Ching-Yi Lai,et al.  Log-Domain Decoding of Quantum LDPC Codes Over Binary Finite Fields , 2021, IEEE Transactions on Quantum Engineering.

[34]  Alex R. Rigby,et al.  Modified belief propagation decoders for quantum low-density parity-check codes , 2019, Physical Review A.

[35]  Hideki Imai,et al.  Quantum Quasi-Cyclic LDPC Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[36]  D.E. Hocevar,et al.  A reduced complexity decoder architecture via layered decoding of LDPC codes , 2004, IEEE Workshop onSignal Processing Systems, 2004. SIPS 2004..

[37]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[38]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[39]  Bane V. Vasic,et al.  Trapping Set Analysis of Horizontal Layered Decoder , 2018, 2018 IEEE International Conference on Communications (ICC).

[40]  Lajos Hanzo,et al.  The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure , 2015, IEEE Access.

[41]  Baoming Bai,et al.  Enhanced Feedback Iterative Decoding of Sparse Quantum Codes , 2009, IEEE Transactions on Information Theory.