Re-reading the genetic code: The evolutionary potential of frameshifting in time

[1]  I. Brierley,et al.  Ribosome profiling of porcine reproductive and respiratory syndrome virus reveals novel features of viral gene expression , 2019, bioRxiv.

[2]  D. Hughes,et al.  Antibiotic resistance by high-level intrinsic suppression of a frameshift mutation in an essential gene , 2020, Proceedings of the National Academy of Sciences.

[3]  M. Rodnina,et al.  Modulation of HIV-1 Gag/Gag-Pol frameshifting by tRNA abundance , 2019, Nucleic acids research.

[4]  S. Napthine,et al.  Protein-directed ribosomal frameshifting temporally regulates gene expression , 2017, Nature Communications.

[5]  J. F. Atkins,et al.  Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use , 2016, Nucleic acids research.

[6]  R. Nichols,et al.  Programmed Ribosomal Frameshifting Mediates Expression of the α-Carboxysome. , 2016, Journal of molecular biology.

[7]  Dieter Söll,et al.  Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology , 2015, Nature Reviews Microbiology.

[8]  J. F. Atkins,et al.  Augmented genetic decoding: global, local and temporal alterations of decoding processes and codon meaning , 2015, Nature Reviews Genetics.

[9]  Dan S. Tawfik,et al.  The Evolutionary Potential of Phenotypic Mutations , 2015, PLoS genetics.

[10]  Axel Visel,et al.  Stop codon reassignments in the wild , 2014, Science.

[11]  S. Napthine,et al.  Transactivation of programmed ribosomal frameshifting by a viral protein , 2014, Proceedings of the National Academy of Sciences.

[12]  K. Kannan,et al.  Regulation of gene expression by macrolide-induced ribosomal frameshifting. , 2013, Molecular cell.

[13]  J. F. Atkins,et al.  Molecular biology: Antibiotic re-frames decoding , 2013, Nature.

[14]  J. Dinman Control of gene expression by translational recoding , 2012, Advances in Protein Chemistry and Structural Biology.

[15]  James J. Cai,et al.  Natural selection retains overrepresented out-of-frame stop codons against frameshift peptides in prokaryotes , 2010, BMC Genomics.

[16]  P. Tompa,et al.  Dual coding in alternative reading frames correlates with intrinsic protein disorder , 2010, Proceedings of the National Academy of Sciences.

[17]  R. Russell,et al.  Recoding of Translation in Turtle Mitochondrial Genomes: Programmed Frameshift Mutations and Evidence of a Modified Genetic Code , 2008, Journal of Molecular Evolution.

[18]  N. Shastri,et al.  A Distinct Translation Initiation Mechanism Generates Cryptic Peptides for Immune Surveillance , 2008, PloS one.

[19]  N. Shastri,et al.  Constitutive Display of Cryptic Translation Products by MHC Class I Molecules , 2003, Science.

[20]  Pavel V Baranov,et al.  Release factor 2 frameshifting sites in different bacteria , 2002, EMBO reports.

[21]  P. Coffino Ubiquitin and proteasomes: Regulation of cellular polyamines by antizyme , 2001, Nature Reviews Molecular Cell Biology.

[22]  Johnson Mak,et al.  Maintenance of the Gag/Gag-Pol Ratio Is Important for Human Immunodeficiency Virus Type 1 RNA Dimerization and Viral Infectivity , 2001, Journal of Virology.

[23]  N. Shastri,et al.  Presentation of out-of-frame peptide/MHC class I complexes by a novel translation initiation mechanism. , 1999, Immunity.

[24]  P. Farabaugh Programmed translational frameshifting , 1996, Microbiological reviews.

[25]  K. Nagashima,et al.  Overexpression of the HIV-1 gag-pol polyprotein results in intracellular activation of HIV-1 protease and inhibition of assembly and budding of virus-like particles. , 1993, Virology.

[26]  H. Varmus,et al.  Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. , 1985, Science.