Software for experimental design: the computer program EXCAD.

A computer program (EXCAD) dedicated to the optimization of experimental designs to estimate parameters of a mathematical model, is presented. EXCAD computes D-optimal designs and sequentially augmented designs. D-optimal designs minimize the determinant of the variance-covariance matrix and parameters, thus obtaining the average most accurate estimate of parameters. D-optimal designs have generally as many support points as the number of parameters in the mathematical model, so sample scheduling is minimal, not extensive. Augmented designs add to an original design the point that maximizes the decrement of the determinant of the variance-covariance matrix. The general model, linearly or not linearly parametrized Y = F(X,P), that relates two independent variables and P parameters to different responses may be written in the program, while a set of prewritten models is provided.

[1]  Lewis B. Sheiner Analysis of pharmacokinetic data using parametric models—1: Regression models , 2005, Journal of Pharmacokinetics and Biopharmaceutics.

[2]  M Rocchetti,et al.  D-optimal design applied to binding saturation curves of an enkephalin analog in rat brain. , 1988, Life sciences.

[3]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[4]  Bogumil Rj Sensitivity analysis of biosystem models. , 1980 .

[5]  DiStefano Jj rd Design and optimization of tracer experiments in physiology and medicine. , 1980 .

[6]  Anthony C. Atkinson,et al.  The Design of Experiments for Parameter Estimation , 1968 .

[7]  E. H. Twizell The mathematical modeling of metabolic and endocrine systems: E.R. Carson, C. Cobelli and L. Finkelstein John Wiley and Sons, Chichester, Sussex, UK, 394 pp., £45.15, 1983 , 1984 .

[8]  R. Duggleby,et al.  Experimental designs for estimating the kinetic parameters for enzyme-catalysed reactions. , 1979, Journal of theoretical biology.

[9]  L. Endrenyi,et al.  Kinetic Data Analysis , 1981 .

[10]  R. C. St D-Optimality for Regression Designs: A Review , 1975 .

[11]  W. G. Hunter,et al.  The use of prior distributions in the design of experiments for parameter estimation in non-linear situations. , 1967, Biometrika.

[12]  J. Kiefer,et al.  Time- and Space-Saving Computer Methods, Related to Mitchell's DETMAX, for Finding D-Optimum Designs , 1980 .

[13]  L. Endrenyi,et al.  Optimal design of experiments for the estimation of precise hyperbolic kinetic and binding parameters. , 1981, Journal of theoretical biology.

[14]  W. G. Hunter,et al.  Experimental Design: Review and Comment , 1984 .

[15]  L. Endrenyi Design of Experiments for Estimating Enzyme and Pharmacokinetic Parameters , 1981 .

[16]  R. C. St. John,et al.  D-Optimality for Regression Designs: A Review , 1975 .

[17]  J. J. McKeown Non-Linear Parameter Estimation , 1972 .

[18]  R. D. Cook,et al.  A Comparison of Algorithms for Constructing Exact D-Optimal Designs , 1980 .

[19]  M Recchia,et al.  MODDIS: a microcomputer program for model discrimination. , 1986, Computer methods and programs in biomedicine.

[20]  James V. Beck,et al.  Parameter Estimation in Engineering and Science , 1977 .