Ergodic theory approach to chaos: Remarks and computational aspects

Ergodic theory approach to chaos: Remarks and computational aspects We discuss basic notions of the ergodic theory approach to chaos. Based on simple examples we show some characteristic features of ergodic and mixing behaviour. Then we investigate an infinite dimensional model (delay differential equation) of erythropoiesis (red blood cell production process) formulated by Lasota. We show its computational analysis on the previously presented theory and examples. Our calculations suggest that the infinite dimensional model considered possesses an attractor of a nonsimple structure, supporting an invariant mixing measure. This observation verifies Lasota's conjecture concerning nontrivial ergodic properties of the model.

[1]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[2]  Philip Beaver,et al.  Fractals and Chaos , 1991 .

[3]  Benoit B. Mandelbrot,et al.  Fractals and Chaos , 2004 .

[4]  S. R. Taylor,et al.  Probabilistic Properties of Delay Differential Equations , 2019, 1909.02544.

[5]  J. R. Dorfman,et al.  An introduction to chaos in nonequilibrium statistical mechanics , 1999 .

[6]  W. Szlenk,et al.  An introduction to the theory of smooth dynamical systems , 1984 .

[7]  Dimension of measures invariant with respect to the Ważewska partial differential equation , 2004 .

[8]  S. Ulam A collection of mathematical problems , 1960 .

[9]  D. Anosov,et al.  Ergodic Properties of Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature , 2020 .

[10]  Teoremi Ergodici per le Eqdazioni della Idrodinamica , 2011 .

[11]  Walenty Ostasiewicz On fuzzy sets , 1981 .

[12]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[13]  R Hide,et al.  Chaos in Dynamic Systems , 1986 .

[14]  A. Lasota,et al.  On a dimension of measures , 2002 .

[15]  Laurence A. Baxter,et al.  Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, Second Edition , 1994, by Andrzej Lasota and Michael C. Mackey, Applied Mathematical Sciences, vol. 97 (New York: Springer-Verlag), xiv + 472 pp. , 1996, Probability in the Engineering and Informational Sciences.

[16]  N. Wax,et al.  The dynamics of phase-locked loops , 1991 .

[17]  R. Rudnicki Chaos for some infinite‐dimensional dynamical systems , 2004 .

[18]  George M. Zaslavsky Chaos in Dynamic Systems , 1985 .

[19]  Maria Ważewska-Czyėwska Erythrokinetics : radioisotopic methods of investigation and mathematical approach , 1984 .

[20]  A. Nicholson An outline of the dynamics of animal populations. , 1954 .

[21]  James A. Yorke,et al.  INTERVAL MAPS, FACTORS OF MAPS, AND CHAOS , 1980 .

[22]  G. Pianigiani,et al.  ON THE EXISTENCE OF INVARIANT MEASURES , 1979 .

[23]  Michael C. Mackey,et al.  Minimizing therapeutically induced anemia , 1981, Journal of mathematical biology.

[24]  A. Lasota Stable and chaotic solutions of a first order partial differential equation , 1981 .

[25]  Stability versus chaos for a partial differential equation , 2002 .

[26]  W. Tucker The Lorenz attractor exists , 1999 .

[27]  B. O. Koopman,et al.  Recent Contributions to the Ergodic Theory. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. Myjak Andrzej Lasota's selected results , 2008 .

[29]  R. Podgornik Book Review: An Introduction to Chaos in Nonequilibrium Statistical Mechanics Cambridge. J. R. Dorfman, Cambridge Lecture Notes in Physics 14, Cambridge University 1999 , 2001 .

[30]  Hans-Otto Walther,et al.  Homoclinic solution and chaos in , 1981 .

[31]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[32]  G. Birkhoff Proof of the Ergodic Theorem , 1931, Proceedings of the National Academy of Sciences.

[33]  Polska Akademia Nauk,et al.  Bulletin of the Polish Academy of Sciences. Mathematics. , 1983 .

[34]  J. Yorke,et al.  On the existence of invariant measures for piecewise monotonic transformations , 1973 .

[35]  Ciprian Foias,et al.  On the statistical study of the Navier-Stokes equations , 1972 .

[36]  Gergely Rost,et al.  On the global attractor of delay differential equations with unimodal feedback , 2008, Discrete & Continuous Dynamical Systems - A.

[37]  J Bass,et al.  Stationary functions and their applications to the theory of turbulence , 1974 .

[38]  R. Rudnicki Chaoticity of the blood cell production system. , 2009, Chaos.

[39]  L. Shampine Solving Delay Differential Equations with dde 23 , 2000 .

[40]  Oliver Penrose,et al.  Modern ergodic theory , 1973 .

[41]  Michael C. Mackey,et al.  Chaos, Fractals, and Noise , 1994 .

[42]  S. P. Blythe,et al.  Nicholson's blowflies revisited , 1980, Nature.

[43]  J. R. Dorfman,et al.  Nonequilibrium statistical mechanics , 2007, Physics Subject Headings (PhySH).

[44]  G. Birkhoff Proof of a Recurrence Theorem for Strongly Transitive Systems. , 1931, Proceedings of the National Academy of Sciences of the United States of America.