Nanotechnology: from the ancient time to nowadays

While nanosciences and nanotechnologies appear as new concepts developed at the end of the twentieth century, we show that metallic nanoparticles have already been used since ancient times, in particular as colorant in the glass and ceramic industries. Moreover, a lot of natural nanomaterials are also present in the mineral, vegetal and animal worlds. Nevertheless, the breakthrough of nanotechnology has been permitted in the past few decades by the advent of apparatus allowing the manipulation and observation of the nanoworld. Indeed, nowadays, nanomaterials and nanoparticles are used for many applications in our daily life, such as in the fields of electronics, catalysis, optics, biology, and medicine. This article presents an overview about nanotechnologies, with applications from ancient times till the present.

[1]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[2]  M. Faraday X. The Bakerian Lecture. —Experimental relations of gold (and other metals) to light , 1857, Philosophical Transactions of the Royal Society of London.

[3]  Philippe Colomban,et al.  The Use of Metal Nanoparticles to Produce Yellow, Red and Iridescent Colour, from Bronze Age to Present Times in Lustre Pottery and Glass: Solid State Chemistry, Spectroscopy and Nanostructure , 2009 .

[4]  John A Kalef-Ezra,et al.  Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma , 2010, Physics in medicine and biology.

[5]  A. Bhowmick Plenty of Room at the Bottom , 2014 .

[6]  Robert Bogue,et al.  Biomimetic adhesives: a review of recent developments , 2008 .

[7]  Hiroshi Sano,et al.  Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C , 1987 .

[8]  A. A. Levin,et al.  Materials: Carbon nanotubes in an ancient Damascus sabre , 2006, Nature.

[9]  A. Pring,et al.  The mineralogical microstructure of shells: PART 2.1 The iridescence colors of abalone shells , 2005 .

[10]  I J Das,et al.  Gold microspheres: a selective technique for producing biologically effective dose enhancement. , 2000, International journal of radiation biology.

[11]  M. Morse Clusters of transition-metal atoms , 1986 .

[12]  C. Louis,et al.  Gold Nanoparticles for Physics, Chemistry and Biology , 2012 .

[13]  A. Dazzi,et al.  Conducting polymer nanostructures for photocatalysis under visible light. , 2015, Nature materials.

[14]  Alan R Hounsell,et al.  Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. , 2011, International journal of radiation oncology, biology, physics.

[15]  L. B. Hunt,et al.  The true story of Purple of Cassius , 1976 .

[16]  Sophie Cassaignon,et al.  Titanium Dioxide in Photocatalysis , 2013 .

[17]  Lei Zhang,et al.  A review of anode catalysis in the direct methanol fuel cell , 2006 .

[18]  R. Stafford,et al.  Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Feynman There's plenty of room at the bottom , 1999 .

[20]  G. Maruccio,et al.  Nano-electronics and spintronics with nanoparticles , 2011 .

[21]  Ian C. Freestone,et al.  AN INVESTIGATION OF THE ORIGIN OF THE COLOUR OF THE LYCURGUS CUP BY ANALYTICAL TRANSMISSION ELECTRON MICROSCOPY , 1990 .

[22]  Olivier Dargaud,et al.  A new procedure for the production of red gold purples at the “Manufacture nationale de Céramiques de Sèvres” , 2007 .

[23]  Wang Zhanguo,et al.  コロイド状硫化銅(I)のOne-pot合成と自己集積 , 2010 .

[24]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[25]  P. Perriat,et al.  Multifunctional nanoparticles: from the detection of biomolecules to the therapy , 2010 .

[26]  L. Plattner Optical properties of the scales of Morpho rhetenor butterflies: theoretical and experimental investigation of the back-scattering of light in the visible spectrum , 2004, Journal of The Royal Society Interface.

[27]  Robert M. Panas,et al.  Nanoscale Morphology and Indentation of Individual Nacre Tablets from the Gastropod Mollusc Trochus Niloticus , 2005 .

[28]  Xiaohua Huang,et al.  Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. , 2006, Journal of the American Chemical Society.

[29]  Katsumi Kobayashi,et al.  Platinum nanoparticles: a promising material for future cancer therapy? , 2010, Nanotechnology.

[30]  W. Barthlott,et al.  Purity of the sacred lotus, or escape from contamination in biological surfaces , 1997, Planta.

[31]  Andreas Solga,et al.  The dream of staying clean: Lotus and biomimetic surfaces , 2007, Bioinspiration & biomimetics.

[32]  Serge Berthier,et al.  Multiple scaled disorder in the photonic structure of Morpho rhetenor butterfly , 2012 .

[33]  Márcia Vilarigues,et al.  Characterisation of medieval yellow silver stained glass from Convento de Cristo in Tomar, Portugal , 2011 .

[34]  Hellmut Haberland,et al.  Clusters of Atoms and Molecules II , 1994 .

[35]  Catherine Higgitt,et al.  The Lycurgus Cup — A Roman nanotechnology , 2007 .

[36]  J. Hainfeld,et al.  The use of gold nanoparticles to enhance radiotherapy in mice. , 2004, Physics in medicine and biology.

[37]  Ralph Weissleder,et al.  Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. , 2003, The New England journal of medicine.

[38]  A. Henglein The Reactivity of Silver Atoms in Aqueous Solutions (A γ‐Radiolysis Study) , 1977 .

[39]  J. V. Sanders,et al.  Colour of Precious Opal , 1964, Nature.

[40]  A. Fujishima,et al.  Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup , 2007 .

[41]  David Thompson Michael Faraday's recognition of ruby gold: the birth of modern nanotechnology , 2007 .

[42]  R. Kubo Electronic Properties of Metallic Fine Particles. I. , 1962 .

[43]  Patrick Couvreur,et al.  Nanotheranostics for personalized medicine. , 2016, Advanced drug delivery reviews.

[44]  J. Shigley,et al.  Iridescent color of a shell of the mollusk pinctada margaritifera caused by diffraction. , 1999, Optics express.

[45]  S. McMahon,et al.  Comment on ‘Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location’ , 2012, Physics in medicine and biology.

[46]  T. Niidome Development of functional gold nanorods for bioimaging and photothermal therapy , 2010 .

[47]  Adam J. Stevenson,et al.  Strong, tough and stiff bioinspired ceramics from brittle constituents. , 2014, Nature materials.

[48]  J. T. Mayo,et al.  Low-Field Magnetic Separation of Monodisperse Fe3O4 Nanocrystals , 2006, Science.

[49]  G. Rytwo Clay Minerals as an Ancient Nanotechnology: Historical Uses of Clay Organic Interactions, and Future Possible Perspectives , 2008 .

[50]  R. Brill,et al.  A RED OPAQUE GLASS FROM SARDIS AND SOME THOUGHTS ON RED OPAQUES IN GENERAL , 1988 .

[51]  C. Louis,et al.  Alternative Methods for the Preparation of Gold Nanoparticles Supported on TiO2 , 2002 .

[52]  R. Burch,et al.  Knowledge and Know‐How in Emission Control for Mobile Applications , 2004 .

[53]  J. Belloni The role of silver clusters in photography , 2002 .

[54]  Mari Carmen Serra Puche,et al.  Maya Blue Paint: An Ancient Nanostructured Material , 1996, Science.