Lax algebra meets topology
暂无分享,去创建一个
[1] 花井 七郎. 可換な closure operators について , 1951 .
[2] E. Manes,et al. A triple theoretic construction of compact algebras , 1969 .
[3] F. William Lawvere,et al. Metric spaces, generalized logic, and closed categories , 1973 .
[4] E. G. Manes. Compact Hausdorff objects , 1974 .
[5] Horst Herrlich,et al. Factorizations, denseness, separation, and relatively compact objects , 1987 .
[6] Eraldo Giuli,et al. Closure operators I , 1987 .
[7] S. Lack,et al. Introduction to extensive and distributive categories , 1993 .
[8] Walter Tholen,et al. TOPOLOGY IN A CATEGORY: COMPACTNESS , 1996 .
[9] Walter Tholen,et al. Tychonoff’s Theorem in a category , 1996 .
[10] R. Lowen. Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad , 1997 .
[11] Walter Tholen. A categorical guide to separation, compactness and perfectness. , 1999 .
[12] Dirk Hofmann,et al. Triquotient maps via ultrafilter convergence , 2002 .
[13] George Janelidze,et al. Finite preorders and Topological descent I , 2002 .
[14] Walter Tholen,et al. Metric, topology and multicategory—a common approach , 2003 .
[15] Dirk Hofmann,et al. Topological Features of Lax Algebras , 2003, Appl. Categorical Struct..
[16] Walter Tholen,et al. Categorical Foundations: A Functional Approach to General Topology , 2003 .
[17] Dirk Hofmann,et al. One Setting for All: Metric, Topology, Uniformity, Approach Structure , 2004, Appl. Categorical Struct..
[18] Dirk Hofmann,et al. Local homeomorphisms via ultrafilter convergence , 2004 .
[19] Martín Hötzel Escardó,et al. Synthetic Topology: of Data Types and Classical Spaces , 2004, DTMPP.
[20] Robert Lowen,et al. A Kuratowski–Mrówka theorem in approach theory , 2005 .
[21] Gavin J. Seal. CANONICAL AND OP-CANONICAL LAX ALGEBRAS , 2005 .
[22] Dirk Hofmann,et al. Topological theories and closed objects , 2007 .
[23] Walter Tholen,et al. Ordered Topological Structures , 2009 .
[24] E. Manes. Monads in topology , 2010 .