Lax algebra meets topology

[1]  花井 七郎 可換な closure operators について , 1951 .

[2]  E. Manes,et al.  A triple theoretic construction of compact algebras , 1969 .

[3]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[4]  E. G. Manes Compact Hausdorff objects , 1974 .

[5]  Horst Herrlich,et al.  Factorizations, denseness, separation, and relatively compact objects , 1987 .

[6]  Eraldo Giuli,et al.  Closure operators I , 1987 .

[7]  S. Lack,et al.  Introduction to extensive and distributive categories , 1993 .

[8]  Walter Tholen,et al.  TOPOLOGY IN A CATEGORY: COMPACTNESS , 1996 .

[9]  Walter Tholen,et al.  Tychonoff’s Theorem in a category , 1996 .

[10]  R. Lowen Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad , 1997 .

[11]  Walter Tholen A categorical guide to separation, compactness and perfectness. , 1999 .

[12]  Dirk Hofmann,et al.  Triquotient maps via ultrafilter convergence , 2002 .

[13]  George Janelidze,et al.  Finite preorders and Topological descent I , 2002 .

[14]  Walter Tholen,et al.  Metric, topology and multicategory—a common approach , 2003 .

[15]  Dirk Hofmann,et al.  Topological Features of Lax Algebras , 2003, Appl. Categorical Struct..

[16]  Walter Tholen,et al.  Categorical Foundations: A Functional Approach to General Topology , 2003 .

[17]  Dirk Hofmann,et al.  One Setting for All: Metric, Topology, Uniformity, Approach Structure , 2004, Appl. Categorical Struct..

[18]  Dirk Hofmann,et al.  Local homeomorphisms via ultrafilter convergence , 2004 .

[19]  Martín Hötzel Escardó,et al.  Synthetic Topology: of Data Types and Classical Spaces , 2004, DTMPP.

[20]  Robert Lowen,et al.  A Kuratowski–Mrówka theorem in approach theory , 2005 .

[21]  Gavin J. Seal CANONICAL AND OP-CANONICAL LAX ALGEBRAS , 2005 .

[22]  Dirk Hofmann,et al.  Topological theories and closed objects , 2007 .

[23]  Walter Tholen,et al.  Ordered Topological Structures , 2009 .

[24]  E. Manes Monads in topology , 2010 .