Intelligent Mapping of Urban Forests from High-Resolution Remotely Sensed Imagery Using Object-Based U-Net-DenseNet-Coupled Network

[1]  Gui-Song Xia,et al.  Land-Cover Classification with High-Resolution Remote Sensing Images Using Transferable Deep Models , 2018 .

[2]  Lingfeng Wang,et al.  Semantic Labeling in Very High Resolution Images via a Self-Cascaded Convolutional Neural Network , 2017, ISPRS Journal of Photogrammetry and Remote Sensing.

[3]  Manfred F. Buchroithner,et al.  A Synergetic Analysis of Sentinel-1 and -2 for Mapping Historical Landslides Using Object-Oriented Random Forest in the Hyrcanian Forests , 2019, Remote. Sens..

[4]  Peter Caccetta,et al.  ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[5]  Yi Zhang,et al.  SSDC-DenseNet: A Cost-Effective End-to-End Spectral-Spatial Dual-Channel Dense Network for Hyperspectral Image Classification , 2019, IEEE Access.

[6]  Tianyu Zhao,et al.  Remote sensing image classification based on semi-supervised adaptive interval type-2 fuzzy c-means algorithm , 2019, Comput. Geosci..

[7]  Bin Chen,et al.  Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. , 2019, Science bulletin.

[8]  William J. Emery,et al.  Object-Based Convolutional Neural Network for High-Resolution Imagery Classification , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[9]  Carlo Gatta,et al.  Unsupervised Deep Feature Extraction for Remote Sensing Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Peng Yue,et al.  A multi-level context-guided classification method with object-based convolutional neural network for land cover classification using very high resolution remote sensing images , 2020, Int. J. Appl. Earth Obs. Geoinformation.

[11]  Xin Pan,et al.  An object-based convolutional neural network (OCNN) for urban land use classification , 2018, Remote Sensing of Environment.

[12]  Jon Atli Benediktsson,et al.  Land-Cover Mapping by Markov Modeling of Spatial–Contextual Information in Very-High-Resolution Remote Sensing Images , 2013, Proceedings of the IEEE.

[13]  Feng Zhang,et al.  Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands. , 2018 .

[14]  D. Nowak,et al.  A review of urban forest modeling: Implications for management and future research , 2019, Urban Forestry & Urban Greening.

[15]  Tao Liu,et al.  Deep convolutional neural network training enrichment using multi-view object-based analysis of Unmanned Aerial systems imagery for wetlands classification , 2018 .

[16]  Michael Weinmann,et al.  SEMANTIC SEGMENTATION OF AERIAL IMAGERY VIA MULTI-SCALE SHUFFLING CONVOLUTIONAL NEURAL NETWORKS WITH DEEP SUPERVISION , 2018, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences.

[17]  Christoph Straub,et al.  Forest Damage Assessment Using Deep Learning on High Resolution Remote Sensing Data , 2019, Remote. Sens..

[18]  Bo Du,et al.  Kernel Slow Feature Analysis for Scene Change Detection , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Zhaohui Wu,et al.  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1 Land-Use Classification Using Taxi GPS Traces , 2022 .

[20]  Bo Huang,et al.  Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery , 2018, Remote Sensing of Environment.

[21]  Xinchang Zhang,et al.  Developing a multi-filter convolutional neural network for semantic segmentation using high-resolution aerial imagery and LiDAR data , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[22]  Neil Flood,et al.  Using a U-net convolutional neural network to map woody vegetation extent from high resolution satellite imagery across Queensland, Australia , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[23]  Chunjiang Liu,et al.  Mapping aboveground biomass and carbon in Shanghai's urban forest using Landsat ETM+ and inventory data , 2020 .

[24]  Runhe Shi,et al.  Automatic Selection of Optimal Segmentation Scale of High-resolution Remote Sensing Images , 2013 .

[25]  J. Macgregor,et al.  Image texture analysis: methods and comparisons , 2004 .

[26]  Kun Zhu,et al.  Symmetrical Dense-Shortcut Deep Fully Convolutional Networks for Semantic Segmentation of Very-High-Resolution Remote Sensing Images , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[27]  Neal W. Aven,et al.  Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data , 2017 .

[28]  R. Pu,et al.  A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species , 2012 .

[29]  Wenjuan Shen,et al.  Assessing spatio-temporal changes in forest cover and fragmentation under urban expansion in Nanjing, eastern China, from long-term Landsat observations (1987–2017) , 2020, Applied Geography.

[30]  Jing Sun,et al.  Mapping Essential Urban Land Use Categories in Nanjing by Integrating Multi-Source Big Data , 2020, Remote. Sens..

[31]  Ning Han,et al.  Spatiotemporal Estimation of Bamboo Forest Aboveground Carbon Storage Based on Landsat Data in Zhejiang, China , 2018, Remote. Sens..

[32]  Shihong Du,et al.  Learning multiscale and deep representations for classifying remotely sensed imagery , 2016 .

[33]  Xuejian Li,et al.  Very High Resolution Remote Sensing Imagery Classification Using a Fusion of Random Forest and Deep Learning Technique—Subtropical Area for Example , 2020, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[34]  André Stumpf,et al.  bject-oriented mapping of urban trees using Random Forest lassifiers , 2013 .

[35]  James R. Anderson,et al.  A land use and land cover classification system for use with remote sensor data , 1976 .

[36]  Wenju Wang,et al.  A Fast Dense Spectral-Spatial Convolution Network Framework for Hyperspectral Images Classification , 2018, Remote. Sens..

[37]  Francisco Rowe,et al.  A Hierarchical Urban Forest Index Using Street-Level Imagery and Deep Learning , 2019, Remote. Sens..

[38]  Brian K. Gelder,et al.  Exploring multiscale object-based convolutional neural network (multi-OCNN) for remote sensing image classification at high spatial resolution , 2020 .

[39]  Xiaoli Li,et al.  Hyperspectral remote sensing image classification using three-dimensional-squeeze-and-excitation-DenseNet (3D-SE-DenseNet) , 2020 .

[40]  Giles M. Foody,et al.  Good practices for estimating area and assessing accuracy of land change , 2014 .

[41]  Hamami Latifa,et al.  Spatio Temporal Analysis of Vegetation by Vegetation Indices from Multi-dates Satellite Images: Application to a Semi Arid Area in ALGERIA , 2013 .

[42]  Xiaoyan Sun,et al.  Synergistic use of Landsat TM and SPOT5 imagery for object-based forest classification , 2014 .

[43]  Meng Zhang,et al.  Spatiotemporal Evolution of Urban Expansion Using Landsat Time Series Data and Assessment of Its Influences on Forests , 2020, ISPRS Int. J. Geo Inf..

[44]  Christiane Schmullius,et al.  Object-based land cover mapping and comprehensive feature calculation for an automated derivation of urban structure types at block level , 2014 .

[45]  Meng Zhang,et al.  Estimating Forest Aboveground Carbon Storage in Hang-Jia-Hu Using Landsat TM/OLI Data and Random Forest Model , 2019, Forests.

[46]  Bin Zhang,et al.  Three-dimensional convolutional neural network model for tree species classification using airborne hyperspectral images , 2020, Remote Sensing of Environment.

[47]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[48]  R. Pu,et al.  Mapping urban tree species by integrating multi-seasonal high resolution pléiades satellite imagery with airborne LiDAR data , 2020 .

[49]  Dar A. Roberts,et al.  Mapping urban forest structure and function using hyperspectral imagery and lidar data , 2016 .

[50]  Ning Han,et al.  Exploring the synergistic use of multi-scale image object metrics for land-use/land-cover mapping using an object-based approach , 2015 .

[51]  Omid Abdi,et al.  Climate-Triggered Insect Defoliators and Forest Fires Using Multitemporal Landsat and TerraClimate Data in NE Iran: An Application of GEOBIA TreeNet and Panel Data Analysis , 2019, Sensors.

[52]  D. Roberts,et al.  Urban tree species mapping using hyperspectral and lidar data fusion , 2014 .

[53]  Dan Zhang,et al.  Spatial estimation of urban forest structures with Landsat TM data and field measurements , 2015 .

[54]  Gui-Song Xia,et al.  Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery , 2015, Remote. Sens..

[55]  Zhenzhong Chen,et al.  Superpixel-enhanced deep neural forest for remote sensing image semantic segmentation , 2020 .

[56]  William J. Emery,et al.  Contextually guided very-high-resolution imagery classification with semantic segments , 2017 .

[57]  Iryna Dronova,et al.  Spectral vegetation indices of wetland greenness: Responses to vegetation structure, composition, and spatial distribution , 2019 .