An anti-aliasing technique for splatting

Splatting is a popular direct volume rendering algorithm. However, the algorithm does not correctly render cases where the volume sampling rate is higher than the image sampling rate (e.g. more than one voxel maps into a pixel). This situation arises with orthographic projections of high-resolution volumes, as well as with perspective projections of volumes of any resolution. The result is potentially severe spatial and temporal aliasing artifacts. Some volume ray-casting algorithms avoid these artifacts by employing reconstruction kernels which vary in width as the rays diverge. Unlike ray-casting algorithms, existing splatting algorithms do not have an equivalent mechanism for avoiding these artifacts. The authors propose such a mechanism, which delivers high-quality splatted images and has the potential for a very efficient hardware implementation.

[1]  Robert A. Brebin,et al.  Volume rendering , 1998 .

[2]  J. Edward Swan,et al.  Object-order rendering of discrete objects , 1997 .

[3]  Klaus Mueller,et al.  Fast perspective volume rendering with splatting by utilizing a ray-driven approach , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[4]  Hanspeter Pfister,et al.  Cube-4-a scalable architecture for real-time volume rendering , 1996, Proceedings of 1996 Symposium on Volume Visualization.

[5]  Klaus Mueller,et al.  Classification and local error estimation of interpolation and derivative filters for volume rendering , 1996, Proceedings of 1996 Symposium on Volume Visualization.

[6]  Thomas Malzbender,et al.  Frequency Analysis of Gradient Estimators in Volume Rendering , 1996, IEEE Trans. Vis. Comput. Graph..

[7]  Xiaoyang Mao,et al.  Splatting of Non Rectilinear Volumes Through Stochastic Resampling , 1996, IEEE Trans. Vis. Comput. Graph..

[8]  Ricardo S. Avila,et al.  A hardware acceleration method for volumetric ray tracing , 1995, Proceedings Visualization '95.

[9]  David S. Ebert,et al.  Grouping Volume Renderers for Enhanced Visualization in Computational Fluid Dynamics , 1995, IEEE Trans. Vis. Comput. Graph..

[10]  Raghu Machiraju,et al.  Data-parallel, volume-rendering algorithms , 1995 .

[11]  Brian Cabral,et al.  Accelerated volume rendering and tomographic reconstruction using texture mapping hardware , 1994, VVS '94.

[12]  Steve Marschner,et al.  An evaluation of reconstruction filters for volume rendering , 1994, Proceedings Visualization '94.

[13]  M. Levoy,et al.  Fast volume rendering using a shear-warp factorization of the viewing transformation , 1994, SIGGRAPH.

[14]  Roni Yagel,et al.  Accelerating volume animation by space-leaping , 1993, Proceedings Visualization '93.

[15]  Nelson Max,et al.  Texture splats for 3D scalar and vector field visualization , 1993, Proceedings Visualization '93.

[16]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[17]  Lee Westover,et al.  Splatting: a parallel, feed-forward volume rendering algorithm , 1991 .

[18]  Pat Hanrahan,et al.  Hierarchical splatting: a progressive refinement algorithm for volume rendering , 1991, SIGGRAPH.

[19]  N. Max AN OPTIMAL FILTER FOR IMAGE RECONSTRUCTION , 1991 .

[20]  Kevin L. Novins,et al.  An efficient method for volume rendering using perspective projection , 1990, VVS.

[21]  Lee Westover,et al.  Footprint evaluation for volume rendering , 1990, SIGGRAPH.

[22]  George Wolberg,et al.  Digital image warping , 1990 .

[23]  R. Bracewell The Fourier transform. , 1989, Scientific American.

[24]  Lee Westover,et al.  Interactive volume rendering , 1989, VVS '89.

[25]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[26]  Lih-Shyang Chen,et al.  A dynamic screen technique for shaded graphics display of slice-represented objects , 1987, Comput. Vis. Graph. Image Process..

[27]  Ronald N. Bracewell,et al.  The Fourier Transform and Its Applications , 1966 .