Developing Anticipatory Life Cycle Assessment Tools to Support Responsible Innovation

[1]  Thomas P. Seager,et al.  Anticipatory life-cycle assessment of SWCNT-enabled lithium ion batteries , 2014 .

[2]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[3]  B. Weidema Market information in life cycle assessment , 2003 .

[4]  William E. Franklin,et al.  LCA — How it came about , 1996 .

[5]  Mark A. J. Huijbregts,et al.  USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment , 2008 .

[6]  Michael Zwicky Hauschild,et al.  Implementing life cycle assessment in product development , 2003 .

[7]  Martin A. Green,et al.  Solar cell efficiency tables (Version 31) , 2008 .

[8]  Christian Micheletti,et al.  Weight of Evidence approach for the relative hazard ranking of nanomaterials , 2011, Nanotoxicology.

[9]  Ad M J Ragas,et al.  Do interspecies correlation estimations increase the reliability of toxicity estimates for wildlife? , 2012, Ecotoxicology and environmental safety.

[10]  Mirko Miseljic,et al.  Life-cycle assessment of engineered nanomaterials: a literature review of assessment status , 2014, Journal of Nanoparticle Research.

[11]  Rider W. Foley,et al.  Patterns of nanotechnology innovation and governance within a metropolitan area , 2013 .

[12]  S. Hellweg,et al.  Prospective Environmental Life Cycle Assessment of Nanosilver T-Shirts , 2011, Environmental science & technology.

[13]  Martin A. Green,et al.  Solar cell efficiency tables (version 13) , 1999 .

[14]  Thomas P. Seager,et al.  Anticipatory governance and anticipatory life cycle assessment of single wall carbon nanotube anode lithium ion batteries , 2012 .

[15]  M. Roco National Nanotechnology Initiative , 2012 .

[16]  T. Gutowski,et al.  Minimum exergy requirements for the manufacturing of carbon nanotubes , 2010, Proceedings of the 2010 IEEE International Symposium on Sustainable Systems and Technology.

[17]  Thomas L. Theis,et al.  An agent based approach to the potential for rebound resulting from evolution of residential lighting technologies , 2014, The International Journal of Life Cycle Assessment.

[18]  Marcel Weil,et al.  Nanotoxicity and Life Cycle Assessment: First attempt towards the determination of characterization factors for carbon nanotubes , 2014 .

[19]  Elizabeth A. Casman,et al.  Stream dynamics and chemical transformations control the environmental fate of silver and zinc oxide nanoparticles in a watershed-scale model. , 2015, Environmental science & technology.

[20]  D. Collingridge The social control of technology , 1980 .

[21]  O. Jolliet,et al.  Multimedia fate and human intake modeling: spatial versus nonspatial insights for chemical emissions in Western Europe. , 2005, Environmental science & technology.

[22]  Martin A. Green,et al.  Solar cell efficiency tables , 1993 .

[23]  M. Hauschild,et al.  USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties , 2011 .

[24]  Wilhelm Warta,et al.  Solar cell efficiency tables (version 24) , 2004 .

[25]  Olivier Jolliet,et al.  Building a model based on scientific consensus for Life Cycle Impact Assessment of chemicals: the search for harmony and parsimony. , 2008, Environmental science & technology.

[26]  F. Moussa,et al.  Toxicity studies of fullerenes and derivatives. , 2007, Advances in experimental medicine and biology.

[27]  Robert Ries,et al.  Characterizing, Propagating, and Analyzing Uncertainty in Life‐Cycle Assessment: A Survey of Quantitative Approaches , 2007 .

[28]  J. Stilgoe,et al.  Developing a framework for responsible innovation* , 2013, The Ethics of Nanotechnology, Geoengineering and Clean Energy.

[29]  Roland Hischier,et al.  Life cycle assessment of engineered nanomaterials: state of the art and strategies to overcome existing gaps. , 2012, The Science of the total environment.

[30]  Guido Sonnemann,et al.  Uncertainty assessment by a Monte Carlo simulation in a life cycle inventory of electricity produced by a waste incinerator , 2003 .

[31]  Vicki Stone,et al.  Toxicology of nanoparticles: A historical perspective , 2007 .

[32]  Douglas K. R. Robinson,et al.  Co-evolutionary scenarios: An application to prospecting futures of the responsible development of nanotechnology , 2009 .

[33]  A. Horvath,et al.  Lifecycle greenhouse gas implications of US national scenarios for cellulosic ethanol production , 2012 .

[34]  Mark A Chappell,et al.  Limitations of toxicity characterization in life cycle assessment: Can adverse outcome pathways provide a new foundation? , 2016, Integrated environmental assessment and management.

[35]  Anders Baun,et al.  Redefining risk research priorities for nanomaterials , 2009, Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology.

[36]  T. Nemecek,et al.  Overview and methodology: Data quality guideline for the ecoinvent database version 3 , 2013 .

[37]  Sangwon Suh,et al.  Life cycle assessment at nanoscale: review and recommendations , 2012, The International Journal of Life Cycle Assessment.

[38]  Igor Linkov,et al.  Application of stochastic multiattribute analysis to assessment of single walled carbon nanotube synthesis processes. , 2010, Environmental science & technology.

[39]  David H. Guston,et al.  Responsible innovation: motivations for a new journal , 2014 .

[40]  Arturo A. Keller,et al.  Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies , 2014, Journal of Nanoparticle Research.

[41]  E. A. Alsema,et al.  Energy pay-back time of photovoltaic energy systems: present status and prospects , 1998 .

[42]  D. L. King,et al.  Solar cell efficiency tables (version 22) , 1996, Renewable Energy.

[43]  A. Hospido,et al.  PPCPs in wastewater – Update and calculation of characterization factors for their inclusion in LCA studies , 2014 .

[44]  T. Seager,et al.  Stochastic multi-attribute analysis (SMAA) as an interpretation method for comparative life-cycle assessment (LCA) , 2014, The International Journal of Life Cycle Assessment.

[45]  T. Seager,et al.  Coupling multi-criteria decision analysis, life-cycle assessment, and risk assessment for emerging threats. , 2011, Environmental science & technology.