User's reference guide for ODRPACK version 2.01:: software for weighted orthogonal distance regression

ODRPACK is a software package for weighted orthogonal distance regression, i.e., for finding the parameters that minimize the sum of the squared weighted orthogonal distances from a set of observations to the curve or surface determined by the parameters. It can also be used to solve the nonlinear ordinary least squares problem. The procedure has application to curve and surface fitting, and to measurement error models in statistics. ODRPACK can handle both explicit and implicit models, and will easily accommodate complex and other types of multiresponse data. The algorithm implemented is an efficient and stable trust region Levenberg-Marquardt procedure that exploits the structure of the problem so that the computational cost per iteration is equal to that for the same type of algorithm applied to the nonlinear ordinary least squares problem. The package allows a general weighting scheme, provides for finite difference derivatives, and contains extensive error checking and report generating facilities.

[1]  S. Havriliak,et al.  A complex plane representation of dielectric and mechanical relaxation processes in some polymers , 1967 .

[2]  R. Jennrich Asymptotic Properties of Non-Linear Least Squares Estimators , 1969 .

[3]  T. R. Bement,et al.  Variance of Weighted Regression Estimators when Sampling Errors are Independent and Heteroscedastic , 1969 .

[4]  David Mautner Himmelblau,et al.  Process analysis by statistical methods , 1970 .

[5]  G. Stewart Introduction to matrix computations , 1973 .

[6]  A. D. Hall,et al.  Algorithm 528: Framework for a Portable Library [Z] , 1978, TOMS.

[7]  R. Welsch,et al.  The Hat Matrix in Regression and ANOVA , 1978 .

[8]  Charles L. Lawson,et al.  Basic Linear Algebra Subprograms for Fortran Usage , 1979, TOMS.

[9]  Philip E. Gill,et al.  Practical optimization , 1981 .

[10]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[11]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[12]  Robert B. Schnabel,et al.  Computational Experience With Confidence Regions and Confidence Intervals for Nonlinear Least Squares , 1986 .

[13]  Peter V Tryon,et al.  STARPAC :: the standards time series and regression package , 1987 .

[14]  Jack Dongarra,et al.  LINPACK Users' Guide , 1987 .

[15]  P. Boggs,et al.  A Stable and Efficient Algorithm for Nonlinear Orthogonal Distance Regression , 1987 .

[16]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[17]  Robert B. Schnabel,et al.  A computational examination of orthogonal distance regression , 1988 .

[18]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[19]  Griewank,et al.  On automatic differentiation , 1988 .

[20]  Richard H. Byrd,et al.  Algorithm 676: ODRPACK: software for weighted orthogonal distance regression , 1989, TOMS.

[21]  Janet E. Rogers,et al.  Orthogonal Distance Regression ∗ , 2009 .

[22]  A. Hossain,et al.  A comparative study on detection of influential observations in linear regression , 1991 .

[23]  David W. Juedes,et al.  A taxonomy of automatic differentiation tools , 1991 .

[24]  Andreas Griewank,et al.  ADIFOR - Generating Derivative Codes form Fortran Programs , 1992, Sci. Program..