Topology Optimisation of Wideband Coaxial-to-Waveguide Transitions

To maximize the matching between a coaxial cable and rectangular waveguides, we present a computational topology optimisation approach that decides for each point in a given domain whether to hold a good conductor or a good dielectric. The conductivity is determined by a gradient-based optimisation method that relies on finite-difference time-domain solutions to the 3D Maxwell’s equations. Unlike previously reported results in the literature for this kind of problems, our design algorithm can efficiently handle tens of thousands of design variables that can allow novel conceptual waveguide designs. We demonstrate the effectiveness of the approach by presenting optimised transitions with reflection coefficients lower than −15 dB over more than a 60% bandwidth, both for right-angle and end-launcher configurations. The performance of the proposed transitions is cross-verified with a commercial software, and one design case is validated experimentally.

[1]  Ramana V. Grandhi,et al.  A survey of structural and multidisciplinary continuum topology optimization: post 2000 , 2014 .

[2]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[3]  Matthew N. O. Sadiku Numerical Techniques in Electromagnetics, Second Edition , 2000 .

[4]  Ole Sigmund,et al.  On the usefulness of non-gradient approaches in topology optimization , 2011 .

[5]  Tsuyoshi Nomura,et al.  Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique , 2007 .

[6]  B. Bourdin Filters in topology optimization , 2001 .

[7]  Bierng-Chearl Ahn,et al.  Coaxial-to-circular waveguide transition with broadband mode-free operation , 2014 .

[8]  Eddie Wadbro,et al.  Time-Domain Sensitivity Analysis for Conductivity Distribution in Maxwell's Equations , 2015 .

[9]  T. E. Bruns,et al.  Topology optimization of non-linear elastic structures and compliant mechanisms , 2001 .

[10]  Eddie Wadbro,et al.  Topology Optimization of Planar Antennas for Wideband Near-Field Coupling , 2015, IEEE Transactions on Antennas and Propagation.

[11]  R.L. Eisenhart,et al.  A Better Waveguide Short Circuit , 1982, 1982 IEEE MTT-S International Microwave Symposium Digest.

[12]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[13]  Ole Sigmund,et al.  Inverse design of nanostructured surfaces for color effects , 2014 .

[14]  H. Matzner,et al.  Investigation of thick coax-to-waveguide transitions , 2014, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[15]  Ole Sigmund,et al.  Topology optimization of metallic devices for microwave applications , 2010 .

[16]  O. Sigmund,et al.  INVERSE DESIGN OF DIELECTRIC MATERIALS BY TOPOLOGY OPTIMIZATION , 2012 .

[17]  M. Manuilov,et al.  Compact wide-band coaxial-to waveguide microwave transitions for X and Ku bands , 2013, 2013 IX Internatioal Conference on Antenna Theory and Techniques.

[18]  Allen Taflove,et al.  Finite‐Difference Time‐Domain Analysis , 2005 .

[19]  O. SIAMJ.,et al.  A CLASS OF GLOBALLY CONVERGENT OPTIMIZATION METHODS BASED ON CONSERVATIVE CONVEX SEPARABLE APPROXIMATIONS∗ , 2002 .

[20]  Eddie Wadbro,et al.  Patch and ground plane design of microstrip antennas by material distribution topologly optimization , 2014 .

[21]  Ole Sigmund,et al.  Topology Optimization of Sub-Wavelength Antennas , 2011, IEEE Transactions on Antennas and Propagation.

[22]  Ole Sigmund,et al.  A topology optimization method for design of negative permeability metamaterials , 2010 .

[23]  Jakob S. Jensen,et al.  Acoustic design by topology optimization , 2008 .

[24]  G. Wheeler Broadband waveguide-to-coax transitions , 1957 .

[25]  C.I. Coman,et al.  Patch end-Launchers-a family of compact colinear coaxial-to-rectangular waveguide transitions , 2006, IEEE Transactions on Microwave Theory and Techniques.

[26]  Eddie Wadbro,et al.  Topology Optimization of Metallic Antennas , 2014, IEEE Transactions on Antennas and Propagation.

[27]  M. D. Deshpande,et al.  Analysis of an End Launcher for an X-Band Rectangular Waveguide , 1979 .

[28]  R. Mittra,et al.  Analysis of frequency selective surfaces using the finite difference time domain (FDTD) method , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[29]  Matthew N. O. Sadiku,et al.  Numerical Techniques in Electromagnetics , 2000 .

[30]  Emadeldeen Hassan,et al.  Topology optimization of antennas and waveguide transitions , 2015 .

[31]  B. P. Lathi,et al.  Modern Digital and Analog Communication Systems , 1983 .

[32]  S. M. Saad A more accurate analysis and design of coaxial-to-rectangular waveguide end launcher , 1990 .

[33]  S. Yamasaki,et al.  A level set‐based topology optimization method targeting metallic waveguide design problems , 2011 .

[34]  En Li,et al.  An X-band coaxial-to-rectangular waveguide transition , 2011, 2011 IEEE International Conference on Microwave Technology & Computational Electromagnetics.

[35]  Niels Aage,et al.  Topology optimization of microwave waveguide filters , 2016 .

[36]  Tsuyoshi Nomura,et al.  Topology optimization method for microstrips using boundary condition representation and adjoint analysis , 2013, 2013 European Microwave Conference.

[37]  Melinda Piket-May,et al.  9 – Computational Electromagnetics: The Finite-Difference Time-Domain Method , 2005 .

[38]  Eddie Wadbro Analysis and design of acoustic transition sections for impedance matching and mode conversion , 2014 .