∀∃ℝ-Completeness and Area-Universality

In the study of geometric problems, the complexity class \(\exists \mathbb {R}\) plays a crucial role since it exhibits a deep connection between purely geometric problems and real algebra. Sometimes \(\exists \mathbb {R}\) is referred to as the “real analogue” to the class NP. While NP is a class of computational problems that deals with existentially quantified boolean variables, \(\exists \mathbb {R}\) deals with existentially quantified real variables.

[1]  Linda Kleist Drawing planar graphs with prescribed face areas , 2018, J. Comput. Geom..

[2]  Carsten Thomassen Plane Cubic Graphs with Prescribed Face Areas , 1992, Comb. Probab. Comput..

[3]  Jirí Matousek,et al.  Intersection graphs of segments and $\exists\mathbb{R}$ , 2014, ArXiv.

[4]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[5]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[6]  Therese C. Biedl,et al.  Drawing planar 3-trees with given face areas , 2013, Comput. Geom..

[7]  Debajyoti Mondal,et al.  The Complexity of Drawing a Graph in a Polygonal Region , 2018, GD.

[8]  Jürgen Richter-Gebert,et al.  Perspectives on Projective Geometry , 2011 .

[9]  Marcus Schaefer,et al.  Fixed Points, Nash Equilibria, and the Existential Theory of the Reals , 2017, Theory of Computing Systems.

[10]  Riste Škrekovski,et al.  Coloring face hypergraphs on surfaces , 2005, Eur. J. Comb..

[11]  Jrgen Richter-Gebert,et al.  Perspectives on Projective Geometry: A Guided Tour Through Real and Complex Geometry , 2011 .

[12]  James H. Davenport,et al.  Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..

[13]  N. Mnev The universality theorems on the classification problem of configuration varieties and convex polytopes varieties , 1988 .

[14]  Tillmann Miltzow,et al.  $\forall \exists \mathbb{R}$-completeness and area-universality , 2017 .

[15]  Tillmann Miltzow,et al.  The art gallery problem is ∃ ℝ-complete , 2018, STOC.